

REACTION RATES OF RESIDUAL NUCLEI PRODUCED OF ⁵⁹ Co AT THE TARGET *QUINTA*

ZEMAN M.*, ADAM J., BALDIN A. A., CHILAP V.V. FURMAN W.I., KATOVSKY K.*, KISH YU., KHUSHVATKOV J., SOLNYSHKIN A. A., STEGAILOV V. I., TSUPKO-SITNIKOV V. M., TYUTYUNNIKOV S. I., VRZALOVA J.,WAGNER V., ZAVORKA L.

Joint Institute For Nuclear Research, Dubna, Russia

* Brno University Of Technology, Brno, Czech Republic

XXII International Baldin Seminar of High Energy Physics Problem, 16 September 2014

Energy and Transmutation- RAW

J.Adam, A.Baldin, W.Furman, N.Gundorin, B.Gus`kov, M.Kadykov, K.Katovsky, J.Khushvaktov, Yu.Kish, Yu.Kopatch, E.Kostyuhov, I.Kudashin, A.Makan`kin, I.Mar`in, A.Polansky, V.Pronskikh, A.Rogov, V.Schegolev, A.Solnyshkin, V.Tsupko-Sitnikov, S.Tyutyunnikov, A.Vishnevsky, N.Vladimirova, A.Wojceichowski, J.Vrzaova, L.Zavorka, M.Zeman.

Joint Institute for Nuclear Research, Dubna, Russia

V.Chilap, A.Chineov, B.Dubikin, B.Fonarev, M.Galanin, V.Kolesnikov, S.Solodchenkova

CPTP Atomenergomash, Moscow, Russia

M.Artyushenko, V.Sotnikov, V.Voronko KIPT, Kharkov, Ukraine A.Khilmanovich, B.Marcymkevich Stepanov IP, Minsk, Belarus M.Suchopar, O.Svoboda, V.Wagner INP, Rez near Praha, Czech Republic Ch.Stoyanov, O.Yordanov, P.Zhivkov Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria M.Shuta, E.Strugalska-Gola, S. Kilim, M.Bielevicz National Centre for Nuclear Research, Otwock-Swerk, Poland S.Kislitsin, T.Kvochkina, S.Zhdanov Instute for Nuclear Physics NNC RK, Almaty, Kazakhstan M.Manolopoulu Aristotle Uni-Thessaloniki, Thessaloniki, Greece W.Westmeier Gesellschaft for Kernspektrometrie, Germany **R.S.Hashemi-Nezhad**

School of Physics, University of Sydney, Australia

Introduction

The global problem of nuclear energy is radioactive waste. Each year, nuclear power facilities produce about 10 000 m³ of high-level waste worldwide. Therefore scientists have investigated transmutation of radioactive waste using ADS since 90's years.

 \Box Worldwide research: MYRRHA(Belgium) E_p = 600 MeV

Topic of presentation

Samples of ⁵⁹Co were irradiated in the secondary neutron field of the *QUINTA* target generated by the deuteron beam with energy 4 AGeV.

The experimental reaction rates (R_{exp}) of products in ⁵⁹Co were obtained with the use of Gamma spectrometry.

The R_{exp} were compared with calculated reaction rates (R_{cal}) with MCNPX2.7.

QUINTA-M setup layout at the irradiation position

- SSNTD and AD positions at the QUINTA-M target surface

Target QUINTA setup

Positions of investigated samples of ⁵⁹Co

Energy of deuterons: 4 AGeV

Total number of deuterons: N_d=(6.11±0.08)E+12

Irradiation time: 27 h and 18 min

The course of irradiation during 4 AGeV deuteron run on *Quinta* setup.

Our group has six HPGe semiconductor detectors, four detectors were produced by ORTEC company and two detectors were produced by CANBERRA company.

After irradiation, the experimental samples were transported to the YaSNAPP spectroscopy laboratory and measured with the use of germanium semiconductor detectors.

Experimental samples were measured with two HPGe detectors(Det B, Det C)

DBS-> Detector Bias Supply PA-> Preamplifiers and HV filters SA-> Spectroscopy Amplifier MCA-> Multichannel analyzer

DBS
Det
PA
SA
MCA
PC

PA

SA

MCA

Label	Denomination	Company, model	Re effici	lative ency(%)	
Det B	HPGe detector	ORTEC, GMX-23200)	26	
Det C	HPGe detector	ORTEC, GMX-2019(3	32,9	
Label	Denomir	Comp	any, moo	lel	
Det B	HPGe de	ORTEC,	GMX-23	200	
Det C	HPGe de	ORTEC,	GMX-20	190	
DBS	Detector Bia	ORTEC			

Preamplifiers and HV filters

Spectroscopy Amplifier

Multichannel analyzer

ORTEC

CAEN, 968

ORTEC ASPEC 927

An example of γ -ray spectrum in the sample ⁵⁹Co.

Yasnapp spectrometry software package

A set of computer codes has been used for the energy calibration, subtraction of background gamma-ray lines, efficiency calibration and determination of experimental half-lives for the identification of gamma-ray lines. Various isotopes are assigned only when energy, half-life and intensity of peaks match with the values available in the literature.

Reaction rate - is defined as the number of produced residual nuclei $Q(A_r, Z_r)$ per one atom in the sample N_t and one incident deuteron per second N_d according to the following equation.

Energy spectra calculated by MCNPX 2.7 by Martin Suchopar.

59Co(n,γ)				59Co(n,p)			
Sections	R _{Exp}	R _{Cal}	$\frac{R_{Exp}}{R_{Cal}}$	Sections	R_{Exp}	R _{Cal}	$\frac{R_{Exp}}{R_{Cal}}$
2	(1.26±0.13) E-26	(1.19±0.01)E-26	(1.06±0.12)	2	(1.95±0.57) E-27	(6.11±0.061)E-27	(0.32±0.30)
3	(9.34±0.99)E-27	(9.34±0.09)E-27	(1.00±0.12)	3	(1.35±0.15)E-27	(2.51±0.03)E-27	(0.54±0.12)
4	(6.70±0.71)E-27	(5.93±0.0)E-27	(1.13±0.12)	4	(7.70±0.86)E-28	(9.85±0.10)E-28	(0.78±0.12)
59Co(n,2n)				59Co(n,3n)			
Sections	R _{Exp}	R _{Cal}	R_{Exp}	Sections	R_{Exp}	R _{Cal}	R_{Exp}
			R _{Cal}				R _{Cal}
2	(1.92±0.20) E-26	(3.90±0.04)E-26	(0.49±0.12)	2	(6.55±0.69) E-27	(9.79±0.10)E-27	(0.67±0.12)
3	(1.12±0.12)E-26	(1.52±0.02)E-26	(0.74±0.12)	3	(3.90±0.42)E-27	(4.00±0.04)E-27	(0.98±0.12)
4	(5.69±0.06)E-27	(7.82±0.08)E-01	(1.17±0.12)	4	(2.32±0.25)E-27	(1.52±0.02)E-27	(1.53±0.12)

Comparison of experimentally measured (R_{Exp}) and calculated (R_{Cal}) reaction rates. For the calculations of the TALYS 1.6 and MCNPX 2.7.

Conclusions

Interaction of secondary neutrons with ⁵⁹Co nuclei has been experimentally investigated and analyzed.

Secondary neutron field has been generated as a result of irradiation of the massive uranium target **QUINTA** with the JINR Nuclotron deuteron beam with energy 4 AGeV. Experimental samples were situated in different positions of the neutron field.

Results of R_{exp} were compared with R_{cal} calculated of MCNPX2.7. Reaction (n, γ) had a good agreement within one standard deviation, other results of reactions were not in agreement.

Thank you for your attention