Phase transition in multicomponent field theory at finite temperature

V.I. Yukalov and E.P. Yukalova

Bogolubov Laboratory of Theoretical Physics and Laboratory of Information Technologies

> Joint Institute for Nuclear Research Dubna, Russia

> > 1

Problems

- Description of phase transitions
- Microscopic theory
- Perturbation theory
- Divergent series
- Effective limit ?

Divergent series $\rho(x) : \mathbb{R} \to \mathbb{R}$

Perturbation theory

$$\rho(x) \simeq \rho_k(x) \qquad (x \to 0)$$

$$\rho_k(x) = \rho_0(x) \left| 1 + \sum_{n=1}^k a_n x^n \right|$$

$$\rho_k(x) \to ? \qquad (k \to \infty)$$

 \mathcal{X} can be not small

Divergent for any $x \neq 0$

Normalization

$$f_k(x) \equiv \frac{\rho_k(x)}{\rho_0(x)}$$

$$f_k(x) = 1 + \sum_{n=1}^k a_n x^n$$

 $\lim_{x \to 0} f_k(x) = 1$

Optimized perturbation theory

Control functions $u_k = u_k(x)$ $f_k(x) \rightarrow F_k(x, u_k)$

Convergent sequence

$$\{F_{k}(x, u_{k}(x))\}$$

Cauchy criterion

For each ϵ , there exists k_{ϵ} , so that

$$F_{k+p}(x, u_{k+p}) - F_k(x, u_k) | < \varepsilon$$

for

$$k \geq k_{\varepsilon}, \quad p \geq 1$$

6

Introduction of control functions

- 1. Through initial conditions
- 2. Through change of variables
- 3. Through function transformation

Initial conditions

Perturbation theory

$$H = H_0(u) + \varepsilon [H - H_0(u)]$$

$$\varepsilon \to 1$$

$$\psi(x, u), \quad G_k(x, u)$$

$$F_k(x, u) = \langle \hat{A}(x) \rangle_k$$

Iterative procedure

$$\hat{B} f(x) = 0$$
$$F_0(x, u)$$

Start with

$$F_{k+1}(x, u_{k+1}) = (1 + \hat{B}) F_k(x, u_k)$$

Change of variables

$$x = x_k(z, u_k), \quad z = z_k(x, u_k)$$

Substitution of *x*

$$f_k(x) = f_k(x_k(z, u_k))$$

Expansion in Z

$$f_k(x_k(z, u_k)) \rightarrow \overline{f_k}(z, u_k)$$

Substitution of *z*

$$\overline{f}_{k}(z, u_{k}) = \overline{f}_{k}(z_{k}(x, u_{k}), u_{k})$$

$$F_{k}(x, u_{k}) = \overline{f}_{k}(z_{k}(x, u_{k}), u_{k})$$

Function transformation

$$\hat{T}(u)f(x) = F(x, u)$$

$$f(x) = \hat{T}(u)F(x, u)$$

$$F_{k}(x, u_{k}) = \hat{T}^{-1}(u_{k}) f_{k}(x)$$

Cauchy cost functional

$$C[u] = \frac{1}{2} \sum_{n=0}^{\infty} |F_{n+1}(x, u_{n+1}) - F_n(x, u_n)|^2$$
$$\min |F_{k+1}(x, u_{k+1}) - F_k(x, u_k)|$$

Euler discretization
$$F_{k+1}(x, u_{k+1}) - F_k(x, u_k) \rightarrow$$

$$F_{k+1}(x, u_k) - F_k(x, u_k) + + \frac{\delta F_k(x, u_k)}{\delta u_k} (u_{k+1} - u_k)$$

Optimization

$$\min \left| F_{k+1}(x, u_k) - F_k(x, u_k) + \frac{\delta F_k(x, u_k)}{\delta u_k} (u_{k+1} - u_k) \right|$$

 u_k weakly varying, difference condition $F_{k+1}(x, u_k) - F_k(x, u_k) = 0$

 F_k weakly varying, differential condition

$$\frac{\delta F_k(x, u_k)}{\delta u_k} = 0$$

Control functions

Optimized perturbation theory

- $\{f_k(x)\}$ divergent
- Control functions $u_k(x)$

$$f_k(x) \leftarrow \rightarrow F_k(x, u_k(x))$$

$$\{F_k(x, u_k(x))\}$$
 convergent

- V.I. Yukalov, *Thesis* (Moscow State University, Moscow, 1973),
- V.I. Yukalov, Moscow Univ. Phys. Bull. 31, 10 (1976),
- V.I. Yukalov, Theor. Math. Phys. 28, 652 (1976).

Questions

- 1. How to improve accuracy, with a given number of perturbative terms?
- 2. How to choose initial conditions, if several are admissible?
- 3. How to control procedure stability, when no exact solutions are available?

Self – similar approximation theory

- Approximation order $k \longrightarrow \text{discrete time}$
 - $\{F_k(x,u_k)\} \longleftrightarrow \{y_k(\varphi)\}$
- Approximation sequence <---> cascade trajectory
- Control of convergence <-----> stability of dynamics

Approximation cascade

Reonomic constraint

$$F_0(x, u_k(x)) = \phi, \quad x = x_k(\phi)$$

Expansion function

$$x_k(\varphi)$$

Endomorphism

$$y_k(\varphi) \equiv F_k(x_k(\varphi), u_k(x_k(\varphi)))$$

Cascade

$$\{ y_k(\varphi) : k = 0, 1, 2, ... \}$$

Initial condition

$$y_0(\varphi) = \varphi$$

 $y^*(\phi)$ effective limit of approximation sequence

Group self – similarity $y_{k+p}(\varphi) = y_k(y_p(\varphi))$

Identity for

$$\varphi \rightarrow y^*(\varphi)$$

Semigroup

$$y_{k+p} = y_k \cdot y_p, \quad y_0 = 1$$

Evolution integral

$$\int_{y_k}^{y_k^*} \frac{dy}{v_k(y)} = \tau_k$$

Control time

$$\boldsymbol{\tau}_k$$

Euler discretization

$$v_k(\varphi) = F_{k+1}(x_k, u_k) - F_k(x_k, u_k) +$$

+ $(u_{k+1} - u_k) \frac{\partial}{\partial u_k} F_k(x_k, u_k)$

Cascade velocity

Accuracy improvement

$$\int_{F_k}^{f_k^*} \frac{d \varphi}{v_k(\varphi)} = \tau_k$$
$$f_k^*(x) \equiv F_k^*(x, u_k(x))$$
$$v_k \to 0, \quad f_k^* \to F_k$$
$$\min |v_k| \leftarrow \to \min C[u]$$
Minimal velocity condition
$$\to u_k(x)$$
$$\min |v_k| \neq 0$$

Dynamics

$$F_k \rightarrow f_k^*$$

Stability conditions

Local multiplier

$$\mu_k(\varphi) \equiv \frac{\partial}{\partial \varphi} y_k(\varphi)$$

Local stability

$$|\mu_k(\varphi)| < 1$$

Multiplier at fixed point

$$\mu_k^*(\varphi) \equiv \mu_k(\gamma_k^*(\varphi))$$

Stable fixed point

 $|\mu_k^*(\varphi)| < 1$

Maximal multiplier at fixed point

 $\mu_k^* = \sup_{\varphi} |\mu_k^*(\varphi)| = \sup_x |\mu_k(f_k^*(x))|$

- Uniformly stable fixed point $|\mu_k| < 1$
- Minimal of maximal multiplier

Right root approximants

$$f_{k}^{*}(x) = ((...(1 + A_{1}x)^{n_{1}} + A_{2}x^{2})^{n_{2}} + ...A_{k}x^{k})^{n_{k}}$$

A_i, n_i from behaviour at $x \to \infty$

Left root approximants

$$f_{k}^{*}(x) = (((...(1 + A_{1}x)^{2} + A_{2}x^{2})^{3/2} + A_{3}x^{3})^{4/3} + ... + A_{k}x^{k})^{n_{k}}$$

Continued root approximants

$$f_k^*(x) = (1 + A_1 x (1 + A_2 x \dots (1 + A_k x)^s)^s \dots)^s$$

For s = -1, continued fractions, Padé approximants

Exponential approximants

$$f_{k}^{*}(x) = \exp(b_{1}x \exp(b_{2}x \dots \exp(b_{k}x)) \dots)$$
$$b_{n} = \frac{a_{n}(1 + a_{1}^{2})}{n a_{n-1}(1 + a_{n}^{2})}$$

 a_n from expansion at $x \to 0$

Factor approximants

$$f_k^*(x) = \prod_{n=1}^{N_k} (1 + A_i x)^{n_i}$$

$$N_{k} = \begin{cases} k/2, & k=2,4,...\\ (k+1)/2, & k=3,5,... \end{cases}$$

 A_i , n_i from expansion at $x \rightarrow 0$

$$N - \text{Component} \quad \varphi^{4} \quad \text{field theory}$$

$$H[\varphi] = \int \left[\frac{1}{2} \left[\frac{\partial \varphi(x)}{\partial x} \right]^{2} + \frac{m^{2}}{2} \varphi^{2}(x) + \frac{\lambda}{4!} \varphi^{4}(x) \right] dx$$

$$\varphi(x) = \{ \varphi_{n}(x) \colon n = 1, 2, ..., N \}$$

$$x = \{ x_{\alpha} \colon \alpha = 1, 2, ..., d \}$$

$$\varphi^{2}(x) \equiv \sum_{n=1}^{N} \varphi_{n}^{2}(x)$$

$$\left[\frac{\partial \varphi(x)}{\partial x} \right]^{2} \equiv \sum_{n=1}^{N} \sum_{\alpha=1}^{d} \left[\frac{\partial \varphi_{n}(x)}{\partial x_{\alpha}} \right]^{2}$$

$$O(N) \text{ symmetry}$$

$$\varphi_n(x) \rightarrow -\varphi_n(x) \qquad (n = 1, 2, ..., N)$$

$$H[-\varphi] \rightarrow H[\varphi]$$

$$\langle \varphi \rangle_{\mathcal{H}} = 0$$

Thermodynamical potential

$$F \equiv -T \ln \operatorname{Tr} e^{-\beta H[\varphi]}$$
$$F(-\langle \varphi \rangle) = F(\langle \varphi \rangle)$$

Phase Transition

$$\langle \varphi(x) \rangle = 0 \qquad (T > T_c)$$

Spontaneous symmetry breaking

Critical exponents

$\tau \equiv \frac{|T - T_c|}{T_c} \rightarrow 0$

Specific heat

Critical region

$$C_V \propto \tau^{-\alpha}$$

Order parameter (function)

$$\langle \phi \rangle \propto \tau^{\beta}$$

 $\begin{array}{ll} \text{Compressibility} & \kappa_T \propto \tau^{-\gamma} \\ \text{External field} & \left(\ T = T_c \ \right) \\ & h \propto \| \left< \phi \right> |^{\delta} \end{array}$

Pair correlation function $(|\vec{r}| \rightarrow \infty)$

$$g(\vec{r}) \propto \frac{\exp(-r/\xi)}{|\vec{r}|^{d-2+\eta}}$$

Correlation length

$$\xi \propto \tau^{-\nu}$$

Vertex $(T = T_c)$

 $\Gamma(k) \propto 1 + ck^{\omega}$

Scaling relations

Hyperscaling relations

$$\alpha = 2 - \nu d$$

$$\beta = (d - 2 + \eta) \frac{\nu}{2}$$

$$\gamma = (2 - \eta) \nu$$

$$\delta = \frac{d + 2 - \eta}{d - 2 + \eta}$$

Independent:

 η , ν , ω

Critical exponents

Series from $\varepsilon \equiv 4 - d$ expansion

 $d \to 3, \quad \varepsilon \to 1$ $\sum_{n=0}^{5} a_n \varepsilon^n \to \prod_i (1 + A_i \varepsilon)^{n_i}$

N	α	β	γ	δ	η	ν	ω
-2	0.5	0.25	1	5	0	0.5	0.80118
-1	0.36844	0.27721	1.07713	4.88558	0.019441	0.54385	0.79246
0	0.24005	0.30204	1.15587	4.82691	0.029706	0.58665	0.78832
1	0.11465	0.32509	1.23517	4.79947	0.034578	0.62854	0.78799
2	-0.00625	0.34653	1.31320	4.78962	0.036337	0.66875	0.78924
3	-0.12063	0.36629	1.38805	4.78953	0.036353	0.70688	0.79103
4	-0.22663	0.38425	1.45813	4.79470	0.035430	0.74221	0.79296
5	-0.32290	0.40033	1.52230	4.80254	0.034030	0.77430	0.79492
6	-0.40877	0.41448	1.57982	4.81160	0.032418	0.80292	0.79694
7	-0.48420	0.42676	1.63068	4.82107	0.030739	0.82807	0.79918
8	-0.54969	0.43730	1.67508	4.83049	0.029074	0.84990	0.80184
9	-0.60606	0.44627	1.71352	4.83962	0.027463	0.86869	0.80515
10	-0.65432	0.45386	1.74661	4.84836	0.025928	0.88477	0.80927
50	-0.98766	0.50182	1.98402	4.95364	0.007786	0.99589	0.93176
100	-0.89650	0.48334	1.92981	4.99264	0.001229	0.96550	0.97201
1000	-0.99843	0.49933	1.99662	4.99859	0.000235	0.99843	0.99807
10000	-0.99986	0.49993	1.99966	4.99986	0.000024	0.99984	0.99979
∞	-1	0.5	2	5	0	1	1

Conclusion

- Methods for defining limits of divergent series.
- Simple calculations.
- The results close to other complicated methods, such as Padé Borel summation.
- In agreement with Monte Carlo simulations.
- For N = -2 and $N \rightarrow \infty$, exact known values.