Feasibility Study of $\phi(1020)$ Production at NICA/MPD

Lyubka Yordanova VBLHEP,JINR,Dubna,Russia

XXII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics" 15-20 September 2014, Dubna, Russia

Contents:

- **1. Introduction**
- **2. Multi-Purpose Detector MPD at NICA**
- 3. Motivation for feasibility study of $\varphi(1020)$
- 4. UrQMD generator
- 5. Reconstruction of φ(1020)
- 6. Results
- 7. Summary

Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)

NICA parameters

- → Energy range: $\sqrt{s_{NN}}$ = 4-11 GeV
- Beams : from p to Au
- Luminosity : L~10²⁷ (Au), 10³² (p)
- 2 Detectors: MPD (ions), SPD (spin physics)

Staging of MPD at NICA

MPD staging is driven by:

- *the goal* to start energy scan as soon as the first beams are available
- the present constrains in resources and manpower

1-st stage - Mid rapidity tracking + PID2-nd stage - Vertex detector and tracking at forward rapidities

I stage:

- ~Particle yields and spectra (π ,K,p, Λ , Ξ , Ω , ϕ)
- ~Event-by-event fluctuations
- ~Femtoscopy involving π , K, p, Λ
- ~Collective flow for identified hadron species
- ~Electromagnetic probes (electrons, gammas)

Il stage:

- ~Total particle multiplicities
- ~Asymmetries study
- ~Di-Lepton precise study
- ~Charm
- ~Exotics (soft photons, hypernuclei)

The conditions to be fulfilled:

*Keeping flexibility for upgrading towards interesting physics *Foreseeing possibility of new technology implementations *Foreseeing fields of activities for new potential collaborators

Multi-Purpose Detector MPD at NICA

MPD Advantages:

*Hermeticity and homogenous acceptance (2π in azimuth) *Excellent tracking performance and powerful PID *High event rate capability and careful event characterization Central Detector Volume: 9.0 m (Length) 6.0 m (Diameter)

Magnet : 0.5 T superconductor (1st stage)

Tracking : TPC (1st stage,|η|<2.0) ECT, IT (2nd stage,|η<2.5)

Particle ID : TOF, ECAL, TPC (1st stage, |η|<1.5)

Triggering : FD (1st stage,2.0<|η|<4.0)

Centrality : ZDC (1^{st} stage,2.2<| η |<4.8)

Simulation and Analysis Framework for MPD detector

- MpdRoot inherits basic properties from FairRoot (developed at GSI), C++ classes
- Extended set of event generators for heavy ion collisions (UrQMD, LAQGSM, HSD)
- Detector composition and geometry; particle propagation by GEANT3/4
- Advanced detector response functions, realistic tracking and PID included

Motivation for feasibility study of φ(1020) production at NICA/MPD

- 1. Strangeness as a probe of deconfinement
- the lightest bound state of hidden strangeness
- a relatively long life-time of ~46 fm/c

2. Nuclear dynamics and hadron production under extreme nuclear density

- p_{T} spectras and their dependence in terms of shape and normalization on centrality shed light on the constituents of the medium at the time of ϕ formation - study of the mechanism through which ϕ is formed

3. Low cross-section in nuclear matter and early freeze-out

- fewer interactions in the hadronic stage
- v_2 signals can provide a clean signal from the early stage of the system's evolution

Motivation for feasibility study of φ(1020) production at NICA/MPD

4. Particle properties in dense nuclear matter

- information on the collectivity and possible deconfinement of the system in the early stage
- constraint of different dynamical models of elliptic flow and particle production

Challenge - *Low yield of* $\phi(1020)$

Why at NICA/MPD ? - High luminosity , high efficiency, detector with precise tracking

The UrQMD model

The Ultrarelativistic Quantum Molecular Dynamics model is a microscopic model used to simulate (ultra)relativistic heavy ion collisions in wide energy range. Link of site: http://urqmd.org/

Main goals:

- * Creation of dense hadronic matter at high temperatures
- * Creation of mesonic matter and of anti-matter
- * Creation and transport of rare particles in hadronic matter
- * Creation, modification and destruction of strangeness in matter
- * Emission of electromagnetic probes

Reconstruction of φ (1020)

Data set:

* The channel decay $\Phi \rightarrow K+K-$ is used to detect the formation of the ϕ -meson * UrQMD event generator + HypYPt (ϕ added), central Au+Au * Energy - $\sqrt{s} = 11$ GeV (max NICA energy)

Method of reconstruction:

1. Selection of kaon pairs by track quality cuts and particle identification (PID)

2. Calculation of the invariant mass of the kaon pairs (signal distribution)

$$M_{inv} = \sqrt{((E_1 + E_2)^2 - (p_{x1} + p_{x2})^2 - (p_{y1} + p_{y2})^2 - (p_{z1} + p_{z2})^2)}$$

3. Calculation of the combinatorial background (combinatorial background distribution)
* mixed-event technique (K+ and K- from different events)
* same-event technique (K+K+ and K-K- from same events)

Reconstruction of φ (1020)

- 4. Determination of the raw signal distribution (subtraction of the scaled combinatorial background)
- 5. Fitting of the raw signal distribution by a Breit-Wigner function

$$BW(m_{inv}) = \frac{1}{2\pi} \frac{A.W}{(m - m_{\phi})^2 + (W/2)^2}$$

A - Breit-Wigner area
 W - Breit-Wigner width
 m – Reconstructed invariant mass of the φ-meson

Particle Identification - PID

PID: TOF + dE/dx

Species	Species identified as kaons after reconstruction, %			
	All momentum interval	P <= 0.5 GeV/c	0.5<=P<=1.0 GeV/c	1.0<=P<=1.5 GeV/c
k	80.27	96.02	73.65	58.33
π	17.83	2.01	24.92	40.87
р	1.11	0.85	0.71	0.77
е	0.79	1.12	0.72	0.03

Results: Signal Distribution

$$M_{inv} = \sqrt{((E_1 + E_2)^2 - (p_{x1} + p_{x2})^2 - (p_{y1} + p_{y2})^2 - (p_{z1} + p_{z2})^2)}$$

Results: Combinatorial Background

* Mixed-event technique (K+ and K- from different events):

- better possibility for combining selected kaons
- efficiency even in low statistics
- precise performance

Results: Raw Signal Distribution

$$M_{inv} = \sqrt{((E_1 + E_2)^2 - (p_{x1} + p_{x2})^2 - (p_{y1} + p_{y2})^2 - (p_{z1} + p_{z2})^2)}$$

$$BW(m_{inv}) = \frac{1}{2\pi} \frac{A.W}{(m - m_{\phi})^2 + (W/2)^2}$$

Measured values:

BW Width = 4.29 ± 0.10 (MeV/c²) M_{inv} = 1019.640 ± 0.080 (MeV/c²) S/ $\sqrt{(S+B)}$ = 18.11

PDG values:

BW Width = 4.26 ± 0.04 (MeV/c²) M_{inv} = 1019.455 ± 0.020 (MeV/c²)

The measured values of the ϕ mass and width are consistent with the PDG values

Summary

* Measurements of the production of strange particles such as the φ -meson can provide important information on the properties of the medium and particle production mechanisms in ultra-relativistic Au-Au collisions at NICA/MPD.

* The recent developed methods and algorithms for reconstruction of the ϕ -meson at max NICA energy in central Au-Au collisions are shown.

* The obtained values of the ϕ -meson parameters (mass and width) are consistent with the PDG values.

