Theoretical description of the forward-backward multiplicity correlations in windows separated in azimuth and rapidity

Vladimir Vechernin

St.-Petersburg State University

16 September 2014

Outline

\diamond Connection of the forward-backward (FB) correlation coefficient b with two-particle correlation function C_{2}
\diamond The b and C_{2} in the model with independent identical emitters (strings)
\diamond Fitting of the model parameters by FB multiplicity correlations between two small windows, separated in azimuth and rapidity
\diamond Comparison of the FB correlation in large 2π windows with the model results
\diamond Connection with the di-hadron correlation analysis
\diamond Conclusions

Connection of the FB correlation coefficient with two-particle correlation function - 1

Traditionally one uses the following definition of the FB correlation coefficient:

$$
\begin{equation*}
b_{a b s} \equiv \frac{\left\langle n_{F} n_{B}\right\rangle-\left\langle n_{F}\right\rangle\left\langle n_{B}\right\rangle}{D_{n_{F}}} \quad \text { where } \quad D_{n_{F}}=\left\langle n_{F}^{2}\right\rangle-\left\langle n_{F}\right\rangle^{2} \tag{1}
\end{equation*}
$$

To avoid the trivial influence of absolute values of n_{F} and n_{B} on the correlation coefficient we go to the relative or scaled observables:

$$
\begin{equation*}
\nu_{F}=n_{F} /\left\langle n_{F}\right\rangle \quad \text { and } \quad \nu_{B}=n_{B} /\left\langle n_{B}\right\rangle \tag{2}
\end{equation*}
$$

For these observables

$$
\begin{equation*}
b_{r e l}=\frac{\left\langle\nu_{F} \nu_{B}\right\rangle-1}{\left\langle\nu_{F}^{2}\right\rangle-1}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b_{a b s} \tag{3}
\end{equation*}
$$

Connection of the FB correlation coefficient with two-particle correlation function - 2

The two-particle correlation function C_{2} is defined through the inclusive ρ_{1} and double inclusive ρ_{2} distributions:

$$
\begin{gather*}
C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right)=\frac{\rho_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right)}{\rho_{1}\left(\eta_{F}, \phi_{F}\right) \rho_{1}\left(\eta_{B}, \phi_{B}\right)}-1 \tag{4}\\
\rho_{1}(\eta, \phi)=\frac{d^{2} N}{d \eta d \phi}, \quad \rho_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right)=\frac{d^{4} N}{d \eta_{F} d \phi_{F} d \eta_{B} d \phi_{B}} \tag{5}
\end{gather*}
$$

For a small window $\delta \eta \delta \phi$ around η, ϕ we have

$$
\begin{equation*}
\rho_{1}(\eta, \phi) \equiv \frac{\langle n\rangle}{\delta \eta \delta \phi}, \tag{6}
\end{equation*}
$$

here $\langle n\rangle$ is the mean multiplicity in the acceptance $\delta \eta \delta \phi$.

Connection of the FB correlation coefficient with two-particle correlation function - 3

For two small windows: $\delta \eta_{F} \delta \phi_{F}$ around η_{F}, ϕ_{F} and $\delta \eta_{B} \delta \phi_{B}$ around η_{B}, ϕ_{B} we have

$$
\begin{equation*}
\rho_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right) \equiv \frac{\left\langle n_{F} n_{B}\right\rangle}{\delta \eta_{F} \delta \phi_{F} \delta \eta_{B} \delta \phi_{B}} . \tag{7}
\end{equation*}
$$

The formulae (6) and (7) are the base for the experimental measurement of the one- and two-particle densities of charge particles ρ_{1} and ρ_{2}, and hence of the two-particle correlation function $C_{2}(4)$, for which by (6) and (7) we have:

$$
\begin{equation*}
C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right) \equiv \frac{\left\langle n_{F} n_{B}\right\rangle-\left\langle n_{F}\right\rangle\left\langle n_{B}\right\rangle}{\left\langle n_{F}\right\rangle\left\langle n_{B}\right\rangle} . \tag{8}
\end{equation*}
$$

where n_{F} and n_{B} are the event multiplicities in these two small windows.

Connection of the FB correlation coefficient with two-particle correlation function - 4

Comparing with traditional definition of the FB correlation coefficient (1), for small FB windows by (8) we have

$$
\begin{equation*}
b_{\text {rel }}=\frac{\left\langle n_{F}\right\rangle^{2}}{D_{n_{F}}} C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right) \tag{9}
\end{equation*}
$$

Note that for small forward window:

$$
\begin{gather*}
D_{n_{F}}=\left\langle n_{F}\right\rangle\left[1+\left\langle n_{F}\right\rangle C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{F}, \phi_{F}\right)\right] \tag{10}\\
b_{\text {rel }}=\frac{\left\langle n_{F}\right\rangle}{1+\left\langle n_{F}\right\rangle C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{F}, \phi_{F}\right)} C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right) \tag{11}
\end{gather*}
$$

So by (11) we see that the traditional definition of the FB correlation coefficient in the case of small observation windows coincides with the standard definition of two-particle correlation function C_{2} upto some common factor, which depends on the width of the forward window.

Connection of the FB correlation coefficient with two-particle correlation function - 5

One can go in C_{2} to the variables:

$$
\begin{array}{ll}
\eta_{\text {sep }}=\eta_{F}-\eta_{B}, & \eta_{C}=\left(\eta_{F}+\eta_{B}\right) / 2 \\
\phi_{\text {sep }}=\phi_{F}-\phi_{B}, & \phi_{C}=\left(\phi_{F}+\phi_{B}\right) / 2 \tag{13}
\end{array}
$$

and using the connection (8) or (11) check up experimentally the dependence of the two-particle correlation function C_{2} on η_{C} for the different configurations and separations between FB observation windows. In the central rapidity region

$$
\begin{equation*}
C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right)=C_{2}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right) \tag{14}
\end{equation*}
$$

and for small windows we have

$$
\begin{gather*}
D_{n_{F}}=\left\langle n_{F}\right\rangle\left[1+\left\langle n_{F}\right\rangle C_{2}(0,0)\right] \tag{15}\\
b_{\text {rel }}=\frac{\left\langle n_{F}\right\rangle}{1+\left\langle n_{F}\right\rangle C_{2}(0,0)} C_{2}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right) \tag{16}
\end{gather*}
$$

Connection of the FB correlation coefficient with two-particle correlation function - 6

For windows of arbitrary width in azimuth and rapidity, situated in the central rapidity region, a model-independent way, we obtain:

$$
\begin{gather*}
D_{n_{F}}=\left\langle n_{F}\right\rangle\left[1+\left\langle n_{F}\right\rangle l_{F F}\right], \tag{17}\\
b_{\text {rel }}=\frac{\left\langle n_{F}\right\rangle}{1+\left\langle n_{F}\right\rangle l_{F F}} I_{F B}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right) \tag{18}
\end{gather*}
$$

where
$I_{F B}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)=\frac{1}{\delta y_{F} \delta \varphi_{F} \delta y_{B} \delta \varphi_{B}} \int_{\delta y_{F} \delta \varphi_{F}} d y_{1} d \varphi_{1} \int_{\delta y_{B} \delta \varphi_{B}}^{d y_{2} d \varphi_{2} C_{2}\left(\eta_{1}-\eta_{2} ; \phi_{1}-\phi_{2}\right)}$

$$
\begin{equation*}
I_{F F}=\frac{1}{\left(\delta y_{F} \delta \varphi_{F}\right)^{2}} \int_{\delta y_{F} \delta \varphi_{F}} d y_{1} d \varphi_{1} \int_{\delta y_{F} \delta \varphi_{F}} d y_{2} d \varphi_{2} C_{2}\left(\eta_{1}-\eta_{2} ; \phi_{1}-\phi_{2}\right) \tag{19}
\end{equation*}
$$

A.Capella, A.Krzywicki, Phys.Rev.D18, 4120 (1978).
C.Pruneau, S. Gavin, S. Voloshin, Phys.Rev.C66, 044904 (2002).

Model with independent identical emitters - 1

$$
\begin{gather*}
\rho_{1}^{N}(\eta)=N \lambda_{1}(\eta), \tag{21}\\
\rho_{2}^{N}\left(\eta_{F}, \eta_{B} ; \phi_{\text {sep }}\right)=N \lambda_{2}\left(\eta_{F}, \eta_{B} ; \phi_{\text {sep }}\right)+N(N-1) \lambda_{1}\left(\eta_{F}\right) \lambda_{1}\left(\eta_{B}\right) . \tag{22}
\end{gather*}
$$

Then after averaging over N the one- and two-particle densities of charge particles are given by

$$
\begin{equation*}
\rho_{1}(\eta)=\langle N\rangle \lambda_{1}(\eta), \tag{23}
\end{equation*}
$$

$\rho_{2}\left(\eta_{F}, \eta_{B} ; \phi_{\text {sep }}\right)=\langle N\rangle\left[\lambda_{2}\left(\eta_{F}, \eta_{B} ; \phi_{\text {sep }}\right)-\lambda_{1}\left(\eta_{F}\right) \lambda_{1}\left(\eta_{B}\right)\right]+\left\langle N^{2}\right\rangle \lambda_{1}\left(\eta_{F}\right) \lambda_{1}\left(\eta_{B}\right)$
and

$$
\begin{gather*}
\rho_{2}\left(\eta_{F}, \eta_{B} ; \phi_{\text {sep }}\right)-\rho_{1}\left(\eta_{F}\right) \rho_{1}\left(\eta_{B}\right)= \tag{25}\\
=\langle N\rangle\left[\left(\lambda_{2}\left(\eta_{F}, \eta_{B} ; \phi_{\text {sep }}\right)-\lambda_{1}\left(\eta_{F}\right) \lambda_{1}\left(\eta_{B}\right)\right]+D_{N} \lambda_{1}\left(\eta_{F}\right) \lambda_{1}\left(\eta_{B}\right),\right.
\end{gather*}
$$

where D_{N} is the event-by-event variance $D_{N}=\left\langle N^{2}\right\rangle-\langle N\rangle^{2}$ of the number of emitters.
M.A.Braun, C.Pajares, V.V., Phys.Lett.B493, 54 (2000).

Model with independent identical emitters - 2

Then we find

$$
C_{2}\left(\eta_{F}, \eta_{B} ; \phi_{F}-\phi_{B}\right)=\frac{\Lambda\left(\eta_{F}, \eta_{B} ; \phi_{F}-\phi_{B}\right)+\omega_{N}}{\langle N\rangle}
$$

where ω_{N} is the event-by-event scaled variance $\omega_{N}=D_{N} /\langle N\rangle$ of the number of emitters and

$$
\begin{equation*}
\Lambda\left(\eta_{F}, \eta_{B} ; \phi_{F}-\phi_{B}\right)=\frac{\lambda_{2}\left(\eta_{F}, \eta_{B} ; \phi_{F}-\phi_{B}\right)}{\lambda_{1}\left(\eta_{F}\right) \lambda_{1}\left(\eta_{B}\right)}-1 \tag{26}
\end{equation*}
$$

is the two-particle correlation function for charged particles produced from a decay of a single emitter (string).
A.Capella, A.Krzywicki, Phys.Rev.D18, 4120 (1978).

Model with independent identical emitters - 3

In the central rapidity region, where each string contributes to the particle production in the whole rapidity region, one has the translation invariance in rapidity

$$
\begin{equation*}
\lambda_{1}(\eta)=\mu_{0}=\text { const }, \quad \Lambda\left(\eta_{F}, \eta_{B} ; \phi_{\text {sep }}\right)=\Lambda\left(\eta_{F}-\eta_{B} ; \phi_{\text {sep }}\right) \tag{27}
\end{equation*}
$$

then

$$
\begin{gather*}
\rho_{1}(\eta)=\langle N\rangle \mu_{0}=\text { const } \tag{28}\\
C_{2}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)=\frac{\Lambda\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)+\omega_{N}}{\langle N\rangle} . \tag{29}
\end{gather*}
$$

So we see that this common "pedestal" in $C_{2}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)$ is physically important. By (29) we see that from the height of the "pedestal" $\left(\omega_{N} /\langle N\rangle\right)$ one can obtain the important physical information on the magnitude of the fluctuation of the number of emitters N at different energies and centrality fixation.

FB correlation in the model - 1

FB multiplicity correlation strength $b_{r e l}$ in the case of the observation windows of arbitrary width in azimuth and rapidity, which are situated in the central rapidity region, are given by

$$
\begin{equation*}
b_{\text {rel }}=\frac{\left[\omega_{N}+J_{F B}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)\right] \mu_{0} \delta_{F}}{1+\left[\omega_{N}+J_{F F}\right] \mu_{0} \delta_{F}}, \tag{30}
\end{equation*}
$$

(the relative variables are using, V.V. arXiv:1210.7588, 1305.0857), where

$$
J_{F B}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)=\frac{1}{\delta \eta_{F} \delta \phi_{F} \delta \eta_{B} \delta \phi_{B}} \int_{\delta \eta_{F} \delta \phi_{F}} d \eta_{1} d \phi_{1} \int_{\delta \eta_{B} \delta \phi_{B}} d \eta_{2} d \phi_{2} \Lambda\left(\eta_{1}-\eta_{2} ; \phi_{1}-\phi_{2}\right),
$$

$$
\begin{equation*}
J_{F F}=\frac{1}{\left(\delta \eta_{F} \delta \phi_{F}\right)^{2}} \int_{\delta \eta_{F} \delta \phi_{F}} d \eta_{1} d \phi_{1} \int_{\delta \eta_{F} \delta \phi_{F}} d \eta_{2} d \phi_{2} \Lambda\left(\eta_{1}-\eta_{2} ; \phi_{1}-\phi_{2}\right) \tag{31}
\end{equation*}
$$

$\Lambda(\eta ; \phi)$ is the pair correlation function for a single string,
$\omega_{N}=\frac{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}{\langle N\rangle}$ is the e-by-e scaled variance of the number of strings, $\delta_{F} \equiv \delta \eta_{F} \delta \phi_{F} / 2 \pi$ is the acceptance of the forward window, μ_{0} is the average rapidity density of the charged particles from one string.

FB correlation in the model - 2

$\eta_{\text {sep }}, \phi_{\text {sep }}$ are the separations between the centers of FB windows in rapidity and azimuth.

$$
\begin{gather*}
b_{\text {rel }}=b^{L R}+b^{S R} \tag{33}\\
b^{L R}=\frac{\omega_{N} \mu_{0} \delta_{F}}{1+\left[\omega_{N}+J_{F F}\right] \mu_{0} \delta_{F}}, \tag{34}\\
b^{S R}=\frac{\mu_{0} \delta_{F}}{1+\left[\omega_{N}+J_{F F}\right] \mu_{0} \delta_{F}} J_{F B}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right) \tag{35}
\end{gather*}
$$

The Long-Range (LR) contribution arising due to e-by-e fluctuation in the number of emitters (strings).
The Short-Range (SR) contribution originating from the pair correlation function $\Lambda(\eta ; \phi)$ of a single string.
Note that at $\Lambda(\eta, \phi)=0$ we have $J_{F B}=J_{F F}=0$ and $b_{\Lambda=0}^{S R}=0$, but

$$
b_{r e l}^{\Lambda=0}=b_{\Lambda=0}^{L R}=\frac{\omega_{N} \mu_{0} \delta_{F}}{1+\omega_{N} \mu_{0} \delta_{F}} \neq 0
$$

M.A.Braun, R.S.Kolevatov, C.Pajares, V.V., Eur.Phys.J.C32, 535 (2004).

FB correlation in the model - 3

Note that by (31) and (32) for windows of small acceptances in rapidity and azimuth, when $\delta \eta \ll \eta_{\text {cor }}$ and $\delta \phi \ll \phi_{\text {cor }}$ (where $\eta_{\text {cor }}$ and $\phi_{\text {cor }}$ are the characteristic correlation lengthes, defined by the behavior of the pair correlation function $\Lambda(\eta, \phi)$ (39) of a single string), we have

$$
\begin{gather*}
J_{F B}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right) \approx \Lambda\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right) \tag{36}\\
J_{F F} \approx \Lambda(0,0) \tag{37}
\end{gather*}
$$

and the formula (30) takes the simple form

$$
\begin{equation*}
b_{\text {rel }} \approx \frac{\left[\omega_{N}+\Lambda\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)\right] \mu_{0} \delta_{F}}{1+\left[\omega_{N}+\Lambda(0,0)\right] \mu_{0} \delta_{F}} \tag{38}
\end{equation*}
$$

which enables to fit the model parameters by experimental observation of the FB correlations between two small windows, varying the separation between these windows in azimuth and rapidity.

The pair correlation function of a single string

The parametrization for the pair correlation function $\Lambda(\eta, \phi)$ of a single string (basing on the Schwinger mechanism of a string decay, V.V. arXiv:1210.7588):

$$
\begin{equation*}
\Lambda(\eta, \phi)=\Lambda_{1} e^{-\frac{|\eta|}{\eta_{1}}} e^{-\frac{\phi^{2}}{\phi_{1}^{2}}}+\Lambda_{2}\left(e^{-\frac{\left|\eta-\eta_{0}\right|}{\eta_{2}}}+e^{-\frac{\left|\eta+\eta_{0}\right|}{\eta_{2}}}\right) e^{-\frac{(|\phi|-\pi)^{2}}{\phi_{2}^{2}}} . \tag{39}
\end{equation*}
$$

This formula has the nearside peak, characterizing by parameters Λ_{1}, η_{1} and ϕ_{1}, and the awayside ridge-like structure, characterizing by parameters $\Lambda_{2}, \eta_{2}, \eta_{0}$ and ϕ_{2} (two wide overlapping hills shifted by $\pm \eta_{0}$ in rapidity, η_{0} - the mean length of a string decay segment). We imply that in formula (39)

$$
\begin{equation*}
|\phi| \leq \pi \tag{40}
\end{equation*}
$$

If $|\phi|>\pi$, then we use the replacement $\phi \rightarrow \phi+2 \pi k$, so that (40) was fulfilled. With such completions the $\Lambda(\eta, \phi)$ meets the following properties

$$
\begin{equation*}
\Lambda(-\eta, \phi)=\Lambda(\eta, \phi), \quad \Lambda(\eta ;-\phi)=\Lambda(\eta, \phi), \quad \Lambda(\eta, \phi+2 \pi k)=\Lambda(\eta, \phi) \tag{41}
\end{equation*}
$$

Calculation of the integrals

The integrals (31) and (32) in the case of symmetric arbitrary windows $\delta \eta_{F}=\delta \eta_{F} \equiv \delta \eta$ and $\delta \phi_{F}=\delta \phi_{F} \equiv \delta \phi$ reduce to
$J_{F B}\left(\eta_{\text {sep }}, \phi_{\text {sep }}\right)=(\delta \eta \delta \phi)^{-2} \int_{-\delta \eta}^{\delta \eta} d \eta \int_{-\delta \phi}^{\delta \phi} d \phi \Lambda\left(\eta+\eta_{\text {sep }}, \phi+\phi_{\text {sep }}\right) t_{\delta \eta}(\eta) t_{\delta \phi}(\phi)$,

$$
\begin{align*}
J_{F F}= & I_{F B}(0,0)=(\delta \eta \delta \phi)^{-2} \int_{-\delta \eta}^{\delta \eta} d \eta \int_{-\delta \phi}^{\delta \phi} d \phi \Lambda(\eta, \phi) t_{\delta \eta}(\eta) t_{\delta \phi}(\phi)= \tag{42}\\
& =4(\delta \eta \delta \phi)^{-2} \int_{0}^{\delta \eta} d \eta \int_{0}^{\delta \phi} d \phi \Lambda(\eta ; \phi)(\delta \eta-\eta)(\delta \phi-\phi) \tag{43}
\end{align*}
$$

where $t_{\delta y}(y)$ is a "triangular" weight function arising at integration due to phase:

$$
\begin{equation*}
t_{\delta y}(y)=[\theta(-y)(\delta y+y)+\theta(y)(\delta y-y)] \theta(\delta y-|y|) \tag{44}
\end{equation*}
$$

Then the $\eta-\phi$ factorization for near and away side contributions in the fit (39) for $\Lambda(\eta ; \phi)$ enables to reduce the (42) and (43) to single integrals.

Fitting of model parameters by FBC in small windows - 1

Fitting of model parameters by FBC in small windows - 2

Fitting of model parameters by FBC in small windows - 3

Results of the fitting of the model parameters by FB correlations between two small windows, separated in azimuth and rapidity:

\sqrt{s}, TeV		0.9	7.0
LRC	$\mu_{0} \omega_{N}$	0.7	2.1
SRC	$\mu_{0} \Lambda_{1}$	1.5	2.3
	η_{1}	0.75	0.75
	ϕ_{1}	1.2	1.1
	$\mu_{0} \Lambda_{2}$	0.4	0.4
	η_{2}	2.0	2.0
	ϕ_{2}	1.7	1.7
	η_{0}	0.9	0.9

$\omega_{N}=\frac{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}{\langle N\rangle}$ is the e-by-e scaled variance of the number of strings,
μ_{0} is the average rapidity density of the charged particles from one string,
$i=1$ corresponds to the nearside and $i=2$ to the awayside contributions,
η_{0} is the mean length of a string decay segment.
I.Altsybeev, PhD Thesis, SPbSU, 2013.
G.Feofilov et al. (for ALICE Collaboration), PoS (Baldin ISHEPP XXI) 075, 2012.

Comparison of FBC in large 2π windows with SM - 1

Comparison of FBC in large 2π windows with SM - 2

Comparison of FBC in large 2π windows with SM - 3

Connection with the di-hadron correlation analysis - 1

The di-hadron correlation function

$$
\begin{equation*}
C(\Delta y, \Delta \phi) \equiv S / B-1 \tag{45}
\end{equation*}
$$

takes into account all possible pair combinations of particles produced in given event in some ONE LARGE pseudorapidity window $\Delta y \in(-Y, Y)$, where

$$
\begin{equation*}
S=\frac{d^{2} N}{d \Delta y d \Delta \phi} \tag{46}
\end{equation*}
$$

and the B is the same but in the case of uncorrelated particle production. Experimentalists obtain the B by the event mixing procedure.
We can express the enumerator of (45) through the two-particle correlation function:

$$
\begin{equation*}
S(\Delta y, \Delta \phi)=\int_{-Y / 2}^{Y / 2} d y_{1} d y_{2} \rho_{2}\left(y_{1}, y_{2} ; \Delta \phi\right) \delta\left(y_{1}-y_{2}-\Delta y\right) \tag{47}
\end{equation*}
$$

Connection with the di-hadron correlation analysis - 2

In the central rapidity region, when the translation invariance takes place within the whole rapidity interval $(-Y / 2, Y / 2)$, we have

$$
\rho_{2}\left(y_{1}, y_{2} ; \Delta \phi\right)=\rho_{2}\left(y_{1}-y_{2} ; \Delta \phi\right)
$$

and one can fulfill the integration in (47):

$$
\begin{equation*}
S(\Delta y, \Delta \phi)=\rho_{2}(\Delta y ; \Delta \phi) t_{Y}(\Delta y) \tag{48}
\end{equation*}
$$

where the $t_{Y}(\Delta y)$ is a "triangular" weight function

$$
\begin{equation*}
t_{\delta \eta}(y)=[\theta(-y)(\delta \eta+y)+\theta(y)(\delta \eta-y)] \theta(\delta \eta-|y|) . \tag{49}
\end{equation*}
$$

Figure: The "triangular" weight function arising due to phase space .

Connection with the di-hadron correlation analysis - 3

In the denominator of (45) we should replace the $\rho_{2}\left(y_{1}, y_{2} ; \Delta \phi\right)$ by the product $\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)$, which due to the translation invariance in rapidity reduces simply to ρ_{0}^{2}. Then

$$
\begin{equation*}
B(\Delta y, \Delta \phi)=\rho_{0}^{2} t_{\gamma}(\Delta y) \tag{50}
\end{equation*}
$$

Substituting into (45) we get

$$
\begin{equation*}
C(\Delta y, \Delta \phi)=\frac{\rho_{2}(\Delta y ; \Delta \phi)}{\rho_{0}^{2}}-1=C_{2}(\Delta y, \Delta \phi) \tag{51}
\end{equation*}
$$

We see that if the translation invariance in rapidity takes place within the whole interval ($-Y / 2, Y / 2$), then the definition (45) for the di-hadron correlation function C leads to the standard two-particle correlation function C_{2} (4) (see meanwhile the remarks below).

Comment on the normalization

By the formulae:

$$
\begin{aligned}
C_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right) & =\frac{\rho_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right)}{\rho_{1}\left(\eta_{F}, \phi_{F}\right) \rho_{1}\left(\eta_{B}, \phi_{B}\right)}-1 \\
\rho_{1}(\eta, \phi) & \equiv \frac{\langle n\rangle}{\delta \eta \delta \phi} \\
\rho_{2}\left(\eta_{F}, \phi_{F} ; \eta_{B}, \phi_{B}\right) & \equiv \frac{\left\langle n_{F} n_{B}\right\rangle}{\delta \eta_{F} \delta \phi_{F} \delta \eta_{B} \delta \phi_{B}}
\end{aligned}
$$

we see that calculating

$$
C(\Delta \eta, \Delta \phi) \equiv \frac{S}{B}-1
$$

we must to normalize S and B dividing by the number of events ($N_{e v}$), not by the number of triggers $\left(N_{t r}\right)$, pairs $\left(N_{\text {par }}\right)$ or $B(0,0)$.
Otherwise the C will not coincide with C_{2}.

Conclusions

- The observation of multiplicity-multiplicity correlation with two small (in azimuth and rapidity) windows, enables to measure the two-particle correlation function C_{2} in accordance with the standard definition even in the case of nonhomogeneous distributions (e.g. as in pA) without using the event mixing procedure.
- The model with strings as independent identical emitters well describes the FB multiplicity correlation in large 2π windows, when its parameters are fitted by the correlation in small windows.
- The relative contribution of the Long-Range Correlation (LRC), originating from e-by-e fluctuation in the number of emitters (strings), considerably increases with energy while the contribution of the Short-Range Correlations (SRC), originating from the pair correlation function of a single string remains practically the same.
- We must to apply the proper normalization to obtain C_{2} by the di-hadron analysis.

Backup - 1

Backup slides - 1

Fitting the model parameters at 2.76 TeV

At present we have not the experimental value of FB correlation coefficient $b_{\text {rel }}$ with small windows ($\delta \eta=0.2, \delta \phi=\pi / 4$) at the 2.76 TeV energy for fitting of the model parameters at this energy. So for a rude evaluation we take the mean value of the parameters at 0.9 and 7 TeV :

\sqrt{s}, TeV		0.9	2.76	7.0
LRC	$\mu_{0} \omega_{N}$	0.7	1.4	2.1
SRC	$\mu_{0} \Lambda_{1}$	1.5	1.9	2.3
	η_{1}	0.75	0.75	0.75
	ϕ_{1}	1.2	1.15	1.1
	$\mu_{0} \Lambda_{2}$	0.4	0.4	0.4
	η_{2}	2.0	2.0	2.0
	ϕ_{2}	1.7	1.7	1.7
	η_{0}	0.9	0.9	0.9

Then with these parameters we have:

Comparison of FBC in large 2π windows with SM

Backup slides - 2

Backup slides - 2

Comments on the event mixing - 1

In the framework of the model with strings as independent identical emitters we have for the enumerator and the denominator of (45):

$$
\begin{align*}
& S(\Delta y, \Delta \phi)=\rho_{2}(\Delta y ; \Delta \phi) t_{Y}(\Delta y)=\left\langle\rho_{2}^{N}(\Delta y ; \Delta \phi)\right\rangle t_{Y}(\Delta y)= \tag{52}\\
& =\left[\langle N\rangle \Lambda(\Delta y, \Delta \phi)+\left\langle N^{2}\right\rangle\right] \mu_{0}^{2} t_{Y}(\Delta y) \\
& B(\Delta y, \Delta \phi)=\int_{-Y / 2}^{Y / 2} d y_{1} d y_{2} \rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right) \delta\left(y_{1}-y_{2}-\Delta y\right)= \\
& =\int_{-Y / 2}^{Y / 2} d y_{1} d y_{2}\left\langle\rho_{1}^{N}\left(y_{1}\right)\right\rangle\left\langle\rho_{1}^{N}\left(y_{2}\right)\right\rangle \delta\left(y_{1}-y_{2}-\Delta y\right)= \\
& =\rho_{0}^{2} t_{Y}(\Delta y)=\langle N\rangle^{2} \mu_{0}^{2} t_{Y}(\Delta y) \tag{53}
\end{align*}
$$

we have noted that $\lambda_{1}(y)=\mu_{0}$. Then by $C=S / B-1$ we get

$$
\begin{equation*}
C(\Delta y, \Delta \phi)=\frac{\omega_{N}+\Lambda(\Delta y, \Delta \phi)}{\langle N\rangle}=C_{2}(\Delta y, \Delta \phi) \tag{54}
\end{equation*}
$$

Comments on the event mixing - 2

But if instead of (53) one has

$$
B(\Delta y, \Delta \phi)=\int_{-Y / 2}^{Y / 2} d y_{1} d y_{2}\left\langle\rho_{1}^{N}\left(y_{1}\right) \rho_{1}^{N}\left(y_{2}\right)\right\rangle \delta\left(y_{1}-y_{2}-\Delta y\right)=\left\langle N^{2}\right\rangle \mu_{0}^{2} t_{Y}(\Delta y)
$$

as it sometimes takes place in a di-hadron data analysis (or if some other artificial normalization conditions for the $B(\Delta y, \Delta \phi)$ are being used), then instead of (54) by $C=S / B-1$ we get

$$
\begin{equation*}
C(\Delta y, \Delta \phi)=\frac{\langle N\rangle}{\left\langle N^{2}\right\rangle} \Lambda(\Delta y, \Delta \phi) \tag{55}
\end{equation*}
$$

which does not correspond to the standard two-particle correlation function $C_{2}(\Delta y, \Delta \phi)$, defined by (4). Compare (55) with (54) we see that in this case the resulting $C(\Delta y, \Delta \phi)$ does not have an additional contribution reflecting the event-by-event fluctuation in the number of emitters. It depends only on the pair correlation function of a single string $\Lambda(\Delta y, \Delta \phi)$ and, therefore, is equal to zero in the absence of the pair correlation from one string.

