Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Alexei P. Martynenko^{1,2} and Anton M. Trunin^{2,3}

 ¹Samara State University
 ²Korolyov Samara State Aerospace University
 ³Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research

 e^+e^- annihilation:

• K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 89, 142001 (2002)

$$\sigma[e^+e^-
ightarrow J/\psi + \eta_c] imes \mathcal{B}_{\geq 4} = 33^{+7}_{-6} \pm 9 \; ext{fb}$$

 e^+e^- annihilation:

• K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 89, 142001 (2002)

$$\sigma[e^+e^-
ightarrow J/\psi + \eta_c] imes \mathcal{B}_{\geq 4} = 33^{+7}_{-6} \pm 9$$
 fb

Theoretical predictions:

- E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003); 72, 099901(E) (2005)
- K.Y. Liu, Z. G. He, and K. T. Chao, Phys. Lett. B 557, 45 (2003)

$$\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 3.78 \pm 1.26 \text{ fb}$$

$$\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 5.5 \text{ fb}$$

 e^+e^- annihilation:

• K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 89, 142001 (2002)

$$\sigma[e^+e^-
ightarrow J/\psi + \eta_c] imes \mathcal{B}_{\geq 4} = 33^{+7}_{-6} \pm 9 \; ext{fb}$$

Theoretical predictions:

- E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003); 72, 099901(E) (2005)
- K.Y. Liu, Z. G. He, and K. T. Chao, Phys. Lett. B 557, 45 (2003)

$$\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 3.78 \pm 1.26 \text{ fb}$$

$$\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 5.5 \text{ fb}$$

New experiments:

- K. Abe et al. (Belle Collaboration), Phys. Rev. D 70, 071102 (2004)
- B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 031101 (2005)

$$\sigma[e^+e^- \to J/\psi + \eta_c] \times \mathcal{B}_{>2} = 25.6 \pm 2.8 \pm 3.4 \text{ fb}$$

$$\sigma[e^+e^- \to J/\psi + \eta_c] \times \mathcal{B}_{>2} = 17.6 \pm 2.8 \pm 2.1 \text{ fb}$$

2/17

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Improvement sources?

Improvement sources? NLO α_s corrections:

- Y.-J. Zhang, Y.-J. Gao, K.-T. Chao, Phys. Rev. Lett. 96, 092001 (2006)
- B. Gong and J.-X. Wang, Phys. Rev. D 77, 054028 (2008)

 $K \approx 1.96$ (to 3 – 5 fb)

«While this *K* factor is substantial, it does not, by itself, eliminate the discrepancy between theory and experiment» EPJ C **71**, 1534 (2011)

Improvement sources? NLO α_s corrections:

- Y.-J. Zhang, Y.-J. Gao, K.-T. Chao, Phys. Rev. Lett. 96, 092001 (2006)
- B. Gong and J.-X. Wang, Phys. Rev. D 77, 054028 (2008)

 $K \approx 1.96$ (to 3 – 5 fb)

«While this K factor is substantial, it does not, by itself, eliminate the discrepancy between theory and experiment» EPJ C **71**, 1534 (2011)

Relativistic corrections (internal motion of quarks in mesons)

Improvement sources? NLO α_s corrections:

- Y.-J. Zhang, Y.-J. Gao, K.-T. Chao, Phys. Rev. Lett. 96, 092001 (2006)
- B. Gong and J.-X. Wang, Phys. Rev. D 77, 054028 (2008)

 $K \approx 1.96$ (to 3 – 5 fb)

«While this K factor is substantial, it does not, by itself, eliminate the discrepancy between theory and experiment» EPJ C **71**, 1534 (2011)

Relativistic corrections (internal motion of quarks in mesons) Pointed out to be possibly large in early analysis:

• E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003)

 $K = 2.0^{+10.9}_{-1.1}$ (large uncertainties)

Improvement sources? NLO α_s corrections:

- Y.-J. Zhang, Y.-J. Gao, K.-T. Chao, Phys. Rev. Lett. 96, 092001 (2006)
- B. Gong and J.-X. Wang, Phys. Rev. D 77, 054028 (2008)

 $K \approx 1.96$ (to 3 – 5 fb)

«While this K factor is substantial, it does not, by itself, eliminate the discrepancy between theory and experiment» EPJ C **71**, 1534 (2011)

Relativistic corrections (internal motion of quarks in mesons) Pointed out to be possibly large in early analysis:

• E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003)

 $K = 2.0^{+10.9}_{-1.1}$ (large uncertainties)

Found to be large in light-cone approach:

- A.E. Bondar, V.L. Chernyak, Phys. Lett. B 612, 215 (2005)
- J.P. Ma and Z.G. Si, Phys. Rev. D 70, 074007 (2004)
- V.V. Braguta, A. K. Likhoded, A.V. Luchinsky, Phys. Rev. D 72, 074019 (2005)
- V.V. Braguta, Phys. Rev. D 79, 074018 (2009)

Trunin A. Relativistic corrections to the pair B_c mesons production in proton-proton collisions

3/17

... as well as in potential models:

- D. Ebert, A.P. Martynenko, Phys. Rev. D 74, 054008 (2006)
- D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, PLB 672, 264 (2009)

 $\sigma^{
m rel.} pprox 15 - 30~
m fb$

... as well as in potential models:

- D. Ebert, A.P. Martynenko, Phys. Rev. D 74, 054008 (2006)
- D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, PLB 672, 264 (2009)

 $\sigma^{\rm rel.}\approx 15-30~{\rm fb}$

Relativistic corrections within NRQCD formalism:

- Z.-G. He, Y. Fan, K.-T. Chao, Phys. Rev. D 75, 074011 (2007)
- G.T. Bodwin et al., AIP Conf. Proc. 892, 315 (2007)
- G.T. Bodwin, J. Lee, C. Yu, Phys. Rev. D 77, 094018 (2008)

nonrelativistic	relativistic		NLO α_s	correlations of
result, (fb)	corrections	QED	(+QED)	relativistic & NLO $lpha_s$
5.4	2.9	1.0	6.9	1.4

4/17

... as well as in potential models:

- D. Ebert, A.P. Martynenko, Phys. Rev. D 74, 054008 (2006)
- D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, PLB 672, 264 (2009)

 $\sigma^{\rm rel.}\approx 15-30~{\rm fb}$

Relativistic corrections within NRQCD formalism:

- Z.-G. He, Y. Fan, K.-T. Chao, Phys. Rev. D 75, 074011 (2007)
- G.T. Bodwin et al., AIP Conf. Proc. 892, 315 (2007)
- G.T. Bodwin, J. Lee, C. Yu, Phys. Rev. D 77, 094018 (2008)

nonrelativistic	relativistic		NLO α_s	correlations of
result, (fb)	corrections	QED	(+QED)	relativistic & NLO $lpha_{s}$
5.4	2.9	1.0	6.9	1.4

 $\sigma_{[Bodwin,Lee,Yu]} = 17.6^{+8.1}_{-6.7} \text{ fb}$

Part of the NLO $\alpha_{\rm s}$ effects is effectively accounted by the wave functions in light–cone and potential models:

• G.T. Bodwin, D. Kang, J. Lee, Phys. Rev. D 74, 114028 (2006)

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Relativistic corrections

Pair charmonium production $(e^+e^- \text{ and } pp)$:

- E.N. Elekina, A.P. Martynenko, Phys. Rev. D 81, 054006 (2010)
- A.P. Martynenko, A.M. Trunin, Phys. Rev. D 86, 094003 (2012); Phys. At. Nucl. 77, 777 (2014)
- V.V. Braguta, A.K. Likhoded, A.V. Luchinsky, Phys. At. Nucl. 75, 97 (2012)
- Y.-J. Li, G.-Z. Xu, K.-Y. Liu, Y.-J. Zhang, J. High Energy Phys. **1307**, 051 (2013)
- Y. Fan, J. Lee, C. Yu, Phys. Rev. D 87, 094032 (2013)
- X.-H. Li, J.-X. Wang, arXiv:1301.0376 (2013)

Inclusive production:

- Y. Fan, Y.-Q. Ma, K.-T. Chao, Phys. Rev. D 79, 114009 (2009)
- Z.-G. He, Y. Fan, K.-T. Chao, Phys. Rev. D 81, 054036 (2010)
- Y. Jia, Phys. Rev. D 82, 034017 (2010)
- G.-Z. Xu, Y.-J. Li, K.-Y. Liu, Y.-J. Zhang, Phys. Rev. D 86, 094017 (2012); arXiv:1407.3783 (2014)

- nonrelativistic cross sections
 [R. Li, Y.-J. Zhang, K.-T. Chao, Phys. Rev. D 80, 014020 (2009)]
- relativistic corrections

- nonrelativistic cross sections
 [R. Li, Y.-J. Zhang, K.-T. Chao, Phys. Rev. D 80, 014020 (2009)]
- relativistic corrections
 - perturbative corrections to the production amplitude
 - expansion of propagators
 - WF transformation law

- nonrelativistic cross sections
 [R. Li, Y.-J. Zhang, K.-T. Chao, Phys. Rev. D 80, 014020 (2009)]
- relativistic corrections
 - perturbative corrections to the production amplitude
 - expansion of propagators
 - WF transformation law
 - wave functions of the bound states
 - 'effective' relativistic Hamiltonian (Breit potential)

- nonrelativistic cross sections
 [R. Li, Y.-J. Zhang, K.-T. Chao, Phys. Rev. D 80, 014020 (2009)]
- relativistic corrections
 - perturbative corrections to the production amplitude
 - expansion of propagators
 - WF transformation law
 - wave functions of the bound states
 - 'effective' relativistic Hamiltonian (Breit potential)
 - non-zero bound energy effects

Our calculation of relativistic corrections is based on the **quasipotential approach** (or the single-time formulation of the quantum field theory)

Bethe-Salpeter equation:

$$(p_1 - m_1)(p_2 - m_2)\psi_P(p) = i \int \frac{d^4q}{(2\pi)^4} K_{12}(p, q; P)\psi_P(q),$$

 $\psi_{P}(x_{1},x_{2}) = \langle 0 | T\{\psi_{1}(x_{1})\psi_{2}(x_{2})\} | P \rangle - \text{Bethe-Salpeter amplitude or wave function,}$

Our calculation of relativistic corrections is based on the **quasipotential approach** (or the single-time formulation of the quantum field theory)

Bethe-Salpeter equation:

$$(p_1 - m_1)(p_2 - m_2)\psi_P(p) = i \int \frac{d^4q}{(2\pi)^4} K_{12}(p,q;P)\psi_P(q),$$

 $\psi_P(x_1, x_2) = \langle 0 | T \{ \psi_1(x_1) \psi_2(x_2) \} | P \rangle$ — Bethe–Salpeter amplitude or wave function, $x_1^0 \neq x_2^0$:

 $\ll\dots$ a proton today and an electron yesterday do not constitute a hydrogen atom \gg A. Eddington

Our calculation of relativistic corrections is based on the **quasipotential approach** (or the single-time formulation of the quantum field theory)

Bethe-Salpeter equation:

$$(p_1 - m_1)(p_2 - m_2)\psi_P(p) = i \int \frac{d^4q}{(2\pi)^4} K_{12}(p,q;P)\psi_P(q),$$

 $\psi_P(x_1, x_2) = \langle 0 | T \{ \psi_1(x_1) \psi_2(x_2) \} | P \rangle$ — Bethe–Salpeter amplitude or wave function, $x_1^0 \neq x_2^0$:

Logunov–Tavkhelidze equation:

- A.A. Logunov, A.N. Tavkhelidze, Nuovo Cimento 29, 380 (1963)
- V.G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968)
- C. Itzykson, V.G. Kadyshevsky, I.T. Todorov, Phys. Rev. D 1, 2823 (1970)
- R.N. Faustov, Teor. Mat. Fiz 3, 240 (1970)

$$\left[M - \sqrt{\mathbf{p}^2 + m_1^2} - \sqrt{\mathbf{p}^2 + m_1^2}\right]\psi^{(+)}(\mathbf{p}) = \int \frac{d\mathbf{q}}{(2\pi)^3} V(\mathbf{p}, \mathbf{q}; M) \,\psi^{(+)}(\mathbf{q})$$

7/17

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Quasipotential equation in Schrödinger-like form:

- I.T. Todorov, Phys. Rev. D 3, 2351 (1971)
- R.N. Faustov and A.P. Martynenko, Teor. Mat. Fiz 64, 179 (1985)

$$\begin{bmatrix} \frac{b^2(M)}{2\mu_R} - \frac{\mathbf{p}^2}{2\mu_R} \end{bmatrix} \psi^{(+)}(\mathbf{p}) = \int \frac{d\mathbf{q}}{(2\pi)^3} V(\mathbf{p}, \mathbf{q}; M) \psi^{(+)}(\mathbf{q}),$$

$$b^2(M) = \mathbf{p}^2 \Big|_{\text{on shell}} = \frac{1}{4M^2} \left[M^2 - (m_1 + m_2)^2 \right] \left[M^2 - (m_1 - m_2)^2 \right],$$

$$\mu_R = \frac{1}{4M^3} \left[M^4 - (m_1^2 - m_2^2)^2 \right] - \text{relativistic reduced mass.}$$

Quasipotential construction:

1

- R.N. Faustov, Fiz. El. Chast. Atom. Yad. 3, 238 (1972)
- D. Ebert, V.O. Galkin, R.N. Faustov, Phys. Rev. D 57, 5663 (1998)
- D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 72, 034026 (2005)
- V.A. Matveev, V.I. Savrin, A.N. Sissakian, A.N. Tavkhelidze, Teor. Mat. Fiz **132**, 267 (2002)

8/17

31 LO $\alpha_{\rm \textit{s}}$ SPS gluon fusion diagrams

$$\mathcal{M}[gg \to B_c + \bar{B}_c] = \int \frac{d\mathbf{p}}{(2\pi)^3} \int \frac{d\mathbf{q}}{(2\pi)^3} \bar{\Psi}(p, P) \bar{\Psi}(q, Q) \otimes \mathcal{T}(p_1, p_2; q_1, q_2),$$
$$d\sigma[pp \to B_c + \bar{B}_c + X] = \int dx_1 dx_2 f_{g/p}(x_1, \mu) f_{g/p}(x_2, \mu) d\sigma[gg \to B_c + \bar{B}_c]$$

Production amplitude

$$\mathcal{M}[gg \to B_c + \bar{B}_c](k_1, k_2, P, Q) = \frac{1}{9}M\pi^2 \alpha_s^2 \int \frac{d\mathbf{p}}{(2\pi)^3} \int \frac{d\mathbf{q}}{(2\pi)^3} \operatorname{Tr} \mathfrak{M},$$

$$\begin{split} \mathfrak{M} &= \bar{\Psi}_{P,p} \gamma_{\beta} \Gamma_{1}^{\beta \omega} \bar{\Psi}_{Q,q} \gamma_{\omega} + \bar{\Psi}_{P,p} \gamma_{\beta} \bar{\Psi}_{Q,q} \gamma_{\omega} \Gamma_{2}^{\beta \omega} \\ &+ \bar{\Psi}_{P,p} \hat{\varepsilon}_{1} \frac{m_{c} - \hat{k}_{1} + \hat{p}_{1}}{(k_{1} - p_{1})^{2} - m_{c}^{2}} \gamma_{\beta} \bar{\Psi}_{Q,q} \Gamma_{3}^{\beta} + \bar{\Psi}_{P,p} \gamma_{\beta} \frac{m_{c} + \hat{k}_{1} - \hat{q}_{1}}{(k_{1} - q_{1})^{2} - m_{c}^{2}} \hat{\varepsilon}_{1} \bar{\Psi}_{Q,q} \Gamma_{4}^{\beta} \\ &+ \bar{\Psi}_{P,p} \hat{\varepsilon}_{2} \frac{m_{c} - \hat{k}_{2} + \hat{p}_{1}}{(k_{2} - p_{1})^{2} - m_{c}^{2}} \gamma_{\beta} \bar{\Psi}_{Q,q} \Gamma_{5}^{\beta} + \bar{\Psi}_{P,p} \gamma_{\beta} \frac{m_{c} + \hat{k}_{2} - \hat{q}_{1}}{(k_{2} - q_{1})^{2} - m_{c}^{2}} \hat{\varepsilon}_{2} \bar{\Psi}_{Q,q} \Gamma_{6}^{\beta}, \end{split}$$

 $k_{1,2} = x_{1,2}\sqrt{S}/2(1,0,0,\pm 1)$ — the initial gluon four-momenta; P, Q — the total four-momenta of outcoming B_c mesons; $p = L_P(0, \mathbf{p}), q = L_Q(0, \mathbf{q})$ — the relative four-momenta of (anti)quarks. $\varepsilon_{1,2}$ — the polarization vectors of initial gluons.

10/17

Production amplitude

$$\mathcal{M}[gg \to B_c + \bar{B}_c](k_1, k_2, P, Q) = \frac{1}{9}M\pi^2 \alpha_s^2 \int \frac{d\mathbf{p}}{(2\pi)^3} \int \frac{d\mathbf{q}}{(2\pi)^3} \operatorname{Tr} \mathfrak{M},$$

$$\mathfrak{M} = \overline{\Psi}_{\boldsymbol{P},\boldsymbol{p}} \gamma_{\beta} \Gamma_{1}^{\beta\omega} \overline{\Psi}_{\boldsymbol{Q},\boldsymbol{q}} \gamma_{\omega} + \overline{\Psi}_{\boldsymbol{P},\boldsymbol{p}} \gamma_{\beta} \overline{\Psi}_{\boldsymbol{Q},\boldsymbol{q}} \gamma_{\omega} \Gamma_{2}^{\beta\omega}$$

$$+ \overline{\Psi}_{\boldsymbol{P},\boldsymbol{p}} \hat{\varepsilon}_{1} \frac{m_{c} - \hat{k}_{1} + \hat{p}_{1}}{(k_{1} - p_{1})^{2} - m_{c}^{2}} \gamma_{\beta} \overline{\Psi}_{\boldsymbol{Q},\boldsymbol{q}} \Gamma_{3}^{\beta} + \overline{\Psi}_{\boldsymbol{P},\boldsymbol{p}} \gamma_{\beta} \frac{m_{c} + \hat{k}_{1} - \hat{q}_{1}}{(k_{1} - q_{1})^{2} - m_{c}^{2}} \hat{\varepsilon}_{1} \overline{\Psi}_{\boldsymbol{Q},\boldsymbol{q}} \Gamma_{4}^{\beta}$$

$$+ \overline{\Psi}_{\boldsymbol{P},\boldsymbol{p}} \hat{\varepsilon}_{2} \frac{m_{c} - \hat{k}_{2} + \hat{p}_{1}}{(k_{2} - p_{1})^{2} - m_{c}^{2}} \gamma_{\beta} \overline{\Psi}_{\boldsymbol{Q},\boldsymbol{q}} \Gamma_{5}^{\beta} + \overline{\Psi}_{\boldsymbol{P},\boldsymbol{p}} \gamma_{\beta} \frac{m_{c} + \hat{k}_{2} - \hat{q}_{1}}{(k_{2} - q_{1})^{2} - m_{c}^{2}} \hat{\varepsilon}_{2} \overline{\Psi}_{\boldsymbol{Q},\boldsymbol{q}} \Gamma_{6}^{\beta},$$

 $k_{1,2} = x_{1,2}\sqrt{S}/2(1,0,0,\pm 1)$ — the initial gluon four-momenta; P, Q — the total four-momenta of outcoming B_c mesons; $p = L_P(0,\mathbf{p}), q = L_Q(0,\mathbf{q})$ — the relative four-momenta of (anti)quarks. $\varepsilon_{1,2}$ — the polarization vectors of initial gluons.

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Production amplitude

$$\mathcal{M}[gg \to B_c + \bar{B}_c](k_1, k_2, P, Q) = \frac{1}{9}M\pi^2 \alpha_s^2 \int \frac{d\mathbf{p}}{(2\pi)^3} \int \frac{d\mathbf{q}}{(2\pi)^3} \operatorname{Tr} \mathfrak{M},$$

$$\begin{split} \mathfrak{M} &= \bar{\Psi}_{P,p} \gamma_{\beta} \Gamma_{1}^{\beta \omega} \bar{\Psi}_{Q,q} \gamma_{\omega} + \bar{\Psi}_{P,p} \gamma_{\beta} \bar{\Psi}_{Q,q} \gamma_{\omega} \Gamma_{2}^{\beta \omega} \\ &+ \bar{\Psi}_{P,p} \hat{\varepsilon}_{1} \frac{m_{c} - \hat{k}_{1} + \hat{p}_{1}}{(k_{1} - p_{1})^{2} - m_{c}^{2}} \gamma_{\beta} \bar{\Psi}_{Q,q} \Gamma_{3}^{\beta} + \bar{\Psi}_{P,p} \gamma_{\beta} \frac{m_{c} + \hat{k}_{1} - \hat{q}_{1}}{(k_{1} - q_{1})^{2} - m_{c}^{2}} \hat{\varepsilon}_{1} \bar{\Psi}_{Q,q} \Gamma_{4}^{\beta} \\ &+ \bar{\Psi}_{P,p} \hat{\varepsilon}_{2} \frac{m_{c} - \hat{k}_{2} + \hat{p}_{1}}{(k_{2} - p_{1})^{2} - m_{c}^{2}} \gamma_{\beta} \bar{\Psi}_{Q,q} \Gamma_{5}^{\beta} + \bar{\Psi}_{P,p} \gamma_{\beta} \frac{m_{c} + \hat{k}_{2} - \hat{q}_{1}}{(k_{2} - q_{1})^{2} - m_{c}^{2}} \hat{\varepsilon}_{2} \bar{\Psi}_{Q,q} \Gamma_{6}^{\beta} \end{split}$$

 $k_{1,2} = x_{1,2}\sqrt{S}/2(1,0,0,\pm 1)$ — the initial gluon four-momenta; P, Q — the total four-momenta of outcoming B_c mesons; $p = L_P(0, \mathbf{p}), q = L_Q(0, \mathbf{q})$ — the relative four-momenta of (anti)quarks. $\varepsilon_{1,2}$ — the polarization vectors of initial gluons.

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Vertex functions

$$\begin{split} \Gamma_{1}^{\beta\omega} &= 18 D_{\mu}^{\beta} (p_{1}+q_{1}) D_{\nu}^{\omega} (p_{2}+q_{2}) \Big[2\varepsilon_{1} \varepsilon_{2} g^{\mu\nu} - \varepsilon_{1}^{\mu} \varepsilon_{2}^{\nu} - \varepsilon_{1}^{\nu} \varepsilon_{2}^{\mu} \\ &+ i D_{\kappa\lambda} (k_{1}-p_{1}-q_{1}) \mathfrak{E}_{1}^{\kappa\mu} (p_{1}+q_{1}) \mathfrak{E}_{2}^{\lambda\nu} (p_{2}+q_{2}) + i D_{\kappa\lambda} (k_{1}-p_{2}-q_{2}) \mathfrak{E}_{1}^{\lambda\nu} (p_{2}+q_{2}) \mathfrak{E}_{2}^{\kappa\mu} (p_{1}+q_{1}) \Big] \\ &- i \varepsilon_{1}^{\beta} D_{\mu}^{\omega} (p_{2}+q_{2}) \frac{m_{c}-\hat{k}_{1}+\hat{p}_{1}}{(k_{1}-p_{1})^{2}-m_{c}^{2}} \Big[\gamma^{\mu} \frac{m_{c}+\hat{k}_{2}-\hat{q}_{1}}{(k_{2}-q_{1})^{2}-m_{c}^{2}} \hat{\varepsilon}_{2} - 8 \hat{\varepsilon}_{2} \frac{m_{c}-\hat{p}_{2}-\hat{q}_{1}-\hat{q}_{2}}{(p_{2}+q_{1}+q_{2})^{2}-m_{c}^{2}} \gamma^{\mu} \\ &- 9 i \mathfrak{E}_{2}^{\nu\mu} (p_{2}+q_{2}) D_{\nu\rho} (k_{1}-p_{1}-q_{1}) \gamma^{\rho} \Big] - i \varepsilon_{2}^{\beta} D_{\mu}^{\omega} (p_{2}+q_{2}) \frac{m_{c}-\hat{k}_{2}+\hat{p}_{1}}{(k_{2}-p_{1})^{2}-m_{c}^{2}} \\ \times \Big[\gamma^{\mu} \frac{m_{c}+\hat{k}_{1}-\hat{q}_{1}}{(k_{1}-q_{1})^{2}-m_{c}^{2}} \hat{\varepsilon}_{1} - 8 \hat{\varepsilon}_{1} \frac{m_{c}-\hat{p}_{2}-\hat{q}_{1}-\hat{q}_{2}}{(p_{2}+q_{1}+q_{2})^{2}-m_{c}^{2}} \gamma^{\mu} - 9 i \mathfrak{E}_{1}^{\mu\mu} (p_{2}+q_{2}) D_{\nu\rho} (k_{1}-p_{2}-q_{2}) \gamma^{\rho} \Big] \\ &+ 8 i D^{\beta\omega} (p_{2}+q_{2}) \frac{m_{c}+\hat{p}_{1}+\hat{p}_{2}+\hat{q}_{2}}{(p_{1}+p_{2}+q_{2})^{2}-m_{c}^{2}} \Big[\hat{\varepsilon}_{1} \frac{m_{c}+\hat{k}_{2}-\hat{q}_{1}}{(k_{2}-q_{1})^{2}-m_{c}^{2}} \hat{\varepsilon}_{2} + \hat{\varepsilon}_{2} \frac{m_{c}+\hat{k}_{1}-\hat{q}_{1}}{(k_{1}-q_{1})^{2}-m_{c}^{2}} \hat{\varepsilon}_{1} \Big] \\ &+ 9 D_{\nu}^{\omega} (p_{2}+q_{2}) \Big[\mathfrak{E}_{2}^{\mu\nu} (p_{2}+q_{2}) D_{\mu}^{\beta} (k_{1}-p_{1}-q_{1}) \frac{m_{c}+\hat{k}_{1}-\hat{q}_{1}}{(k_{1}-q_{1})^{2}-m_{c}^{2}} \hat{\varepsilon}_{1} \Big] \\ &+ \mathfrak{E}_{1}^{\mu\nu} (p_{2}+q_{2}) D_{\mu}^{\beta} (k_{1}-p_{2}-q_{2}) \frac{m_{c}+\hat{k}_{2}-\hat{q}_{1}}{(k_{2}-q_{1})^{2}-m_{c}^{2}} \hat{\varepsilon}_{2} \Big] \end{split}$$

Auxiliary functions:

$$\mathfrak{E}_{1,2}^{\mu\nu}(x) = g^{\mu\nu}(k_{1,2} - 2x)\varepsilon_{1,2} + \varepsilon_{1,2}^{\mu}(2k_{1,2}^{\nu} - x^{\nu}) + \varepsilon_{1,2}^{\nu}(k_{1,2}^{\mu} + x^{\mu}),$$

$$\mathfrak{E}_{1,2}^{\mu}(x) = \varepsilon_{2,1}^{\nu}\mathfrak{E}_{1,2}^{\mu\nu}(x).$$
(11)

11/17

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Transformation of relativistic wave functions

Quasipotential wave functions are calculated in the meson rest frame and then transformed to the reference frames moving with the four-momenta P(Q):

$$\begin{split} \bar{\Psi}_{P,p} &= \frac{\bar{\Psi}_{B_c}^{0}(\mathbf{p})}{\sqrt{\frac{\epsilon_c(p)}{m_c} \frac{\epsilon_c(p)+m_c}{2m_c} \frac{\epsilon_b(p)}{m_b} \frac{\epsilon_b(p)+m_b}{2m_b}}}{\left[\frac{\hat{v}_1 - 1}{2} + \hat{v}_1 \frac{\mathbf{p}^2}{2m_b(\epsilon_b(p) + m_b)} - \frac{\hat{p}}{2m_b}\right]} \\ &\times \Sigma^P (1 + \hat{v}_1) \left[\frac{\hat{v}_1 + 1}{2} + \hat{v}_1 \frac{\mathbf{p}^2}{2m_c(\epsilon_c(p) + m_c)} + \frac{\hat{p}}{2m_c}\right], \\ \bar{\Psi}_{Q,q} &= \frac{\bar{\Psi}_{B_c}^{0}(\mathbf{q})}{\sqrt{\frac{\epsilon_c(q)}{m_c} \frac{\epsilon_c(q)+m_c}{2m_b} \frac{\epsilon_b(q)}{2m_b}}}{\left[\frac{\hat{v}_2 - 1}{2} + \hat{v}_2 \frac{\mathbf{q}^2}{2m_c(\epsilon_c(q) + m_c)} + \frac{\hat{q}}{2m_c}\right]} \\ &\times \Sigma^Q (1 + \hat{v}_2) \left[\frac{\hat{v}_2 + 1}{2} + \hat{v}_2 \frac{\mathbf{q}^2}{2m_b(\epsilon_b(q) + m_b)} - \frac{\hat{q}}{2m_b}\right]. \end{split}$$

 $\Sigma_{P,Q} = \gamma_5$ or $\varepsilon_{P,Q}$ — for pseudoscalar or vector B_c mesons, respectively Trunin A. Relativistic corrections to the pair B_c mesons production in proton-proton collisions

Expansion of quark and gluon propagators

$$\frac{1}{(p_{1,2}+q_{1,2})^2} = \frac{1}{s\eta_{1,2}^2} \Big[1 \mp \frac{2(pQ+qP)}{s\eta_{1,2}} - \frac{p^2 + 2pq + q^2}{s\eta_{1,2}^2} + \dots \Big],$$

$$\frac{1}{(p_1+q_1+q_2)^2 - m_b^2} = \frac{1}{Z_1} \Big[1 - \frac{2pQ+p^2}{Z_1} + \frac{4(pQ)^2}{Z_1^2} + \dots \Big],$$

$$\frac{1}{(k_2-q_1)^2 - m_c^2} = \frac{1}{Z_2} \Big[1 + \frac{2k_2q-q^2}{Z_2} + \frac{4(k_2Q)^2}{Z_2^2} + \dots \Big],$$
(12)

where $s = x_1 x_2 S$ and $t = (P - k_1)^2 = (Q - k_2)^2$ — the Mandelstam variables for the gluonic subprocess $gg \rightarrow B_c + \overline{B}_c$.

Leading order denominators:

$$Z_1 = s \eta_1 + \eta_2^2 M^2 - m_b^2 \qquad Z_2 = t \eta_1 - \eta_1 \eta_2 M^2 - m_c^2$$
(13)

Neglecting bound state energy:

$$s \eta_{1,2}$$
 $s \eta_{1,2}^2$ $\eta_{1,2}(M^2 - t)$ $\eta_{1,2}(M^2 - s - t)$ (14)

In the case of the most unfavourable values of the variables $x_{1,2}$ and t the expansion parameters in (12) can be roughly assessed as $4p^2/M^2$ and $4q^2/M^2$

Trunin A. Relativistic corrections to the pair B_c mesons production in proton-proton collisions

Expansion of the amplitude

Example from $gg
ightarrow 2J/\psi$ amplitude:

$$\mathcal{M}_{1}^{ab} = \frac{32\alpha_{s}^{2}\delta^{ab}}{9\,m\,s^{4}} \int \frac{m+\epsilon(p)}{2\epsilon(p)} R(p)p^{2}dp \int \frac{m+\epsilon(q)}{2\epsilon(q)} R(q)q^{2}dq \left\{ 3s^{2} \left[\varepsilon_{1} \cdot \varepsilon_{2} (s \varepsilon_{P}^{*} \cdot \varepsilon_{Q}^{*} - 2\varepsilon_{P}^{*} \cdot Q \varepsilon_{Q}^{*} \cdot P) - 2\varepsilon_{P}^{*} \cdot \varepsilon_{Q}^{*} (\varepsilon_{1} \cdot P \varepsilon_{2} \cdot Q + \varepsilon_{1} \cdot Q \varepsilon_{2} \cdot P) + 2\varepsilon_{P}^{*} \cdot Q(\varepsilon_{1} \cdot P \varepsilon_{2} \cdot \varepsilon_{Q}^{*} + \varepsilon_{1} \cdot \varepsilon_{Q}^{*} \varepsilon_{2} \cdot P) - \varepsilon_{1} \cdot \varepsilon_{P}^{*} \times (s \varepsilon_{2} \cdot \varepsilon_{Q}^{*} - 2\varepsilon_{2} \cdot Q \varepsilon_{Q}^{*} \cdot P) - \varepsilon_{2} \cdot \varepsilon_{P}^{*} (s \varepsilon_{1} \cdot \varepsilon_{Q}^{*} - 2\varepsilon_{2} \cdot Q \varepsilon_{Q}^{*} \cdot P) - \varepsilon_{2} \cdot \varepsilon_{P}^{*} (s \varepsilon_{1} \cdot \varepsilon_{Q}^{*} - 2\varepsilon_{2} \cdot Q \varepsilon_{Q}^{*} \cdot P) - \varepsilon_{2} \cdot \varepsilon_{P}^{*} (s \varepsilon_{1} \cdot \varepsilon_{Q}^{*} - 2\varepsilon_{2} \cdot Q \varepsilon_{Q}^{*} \cdot P) \right] \left(3(1 - c_{p} - c_{q} - c_{p}^{2} - c_{q}^{2}) + c_{p}c_{q}(67 + 3c_{p} + 3c_{q}) + 3c_{p}^{2}c_{q}^{2} \right) + \dots \right\}$$

$$c_{p} = \frac{m - \epsilon(p)}{m + \epsilon(p)} \qquad c_{q} = \frac{m - \epsilon(q)}{m + \epsilon(q)}$$

Expansion of the amplitude

Example from $gg \rightarrow 2J/\psi$ amplitude:

$$\mathcal{M}_{1}^{ab} = \frac{32\alpha_{s}^{2}\delta^{ab}}{9\,m\,s^{4}} \int \frac{m+\epsilon(p)}{2\epsilon(p)} R(p)p^{2}dp \int \frac{m+\epsilon(q)}{2\epsilon(q)} R(q)q^{2}dq \left\{ 3s^{2} \left[\varepsilon_{1} \cdot \varepsilon_{2} \left(s \,\varepsilon_{P}^{*} \cdot \varepsilon_{Q}^{*} - 2 \,\varepsilon_{P}^{*} \cdot \mathcal{Q} \,\varepsilon_{Q}^{*} \cdot P \right) - 2 \,\varepsilon_{P}^{*} \cdot \varepsilon_{Q}^{*} \left(\varepsilon_{1} \cdot P \,\varepsilon_{2} \cdot Q + \varepsilon_{1} \cdot \mathcal{Q} \,\varepsilon_{2} \cdot P \right) + 2 \,\varepsilon_{P}^{*} \cdot \mathcal{Q}(\varepsilon_{1} \cdot P \,\varepsilon_{2} \cdot \varepsilon_{Q}^{*} + \varepsilon_{1} \cdot \varepsilon_{Q}^{*} \,\varepsilon_{2} \cdot P) - \varepsilon_{1} \cdot \varepsilon_{P}^{*} \times \left(s \,\varepsilon_{2} \cdot \varepsilon_{Q}^{*} - 2 \,\varepsilon_{2} \cdot \mathcal{Q} \,\varepsilon_{Q}^{*} \cdot P \right) - \varepsilon_{2} \cdot \varepsilon_{P}^{*} \left(s \,\varepsilon_{1} \cdot \varepsilon_{Q}^{*} - 2 \,\varepsilon_{2} \cdot \mathcal{Q} \,\varepsilon_{Q}^{*} \cdot P \right) - \varepsilon_{2} \cdot \varepsilon_{P}^{*} \left(s \,\varepsilon_{1} \cdot \varepsilon_{Q}^{*} - 2 \,\varepsilon_{1} \cdot \mathcal{Q} \,\varepsilon_{Q}^{*} \cdot P \right) \right] \left(3(1 - c_{p} - c_{q} - c_{p}^{2} - c_{q}^{2}) + c_{p}c_{q}(67 + 3c_{p} + 3c_{q}) + 3c_{p}^{2}c_{q}^{2} \right) + \dots \right\}$$

$$c_{p} = \frac{m - \epsilon(p)}{m + \epsilon(p)} \qquad c_{q} = \frac{m - \epsilon(q)}{m + \epsilon(q)}$$

For B_c mesons — additional complication due to the unequal quark masses m_b and m_c , e.g.: $\frac{m + \epsilon(p)}{2\epsilon(p)} \rightarrow \sqrt{\frac{(\epsilon_c(p) + m_c)(\epsilon_b(p) + m_b)}{2\epsilon_c(p) 2\epsilon_b(p)}}$ (15)

The principal structure of the relativstic corrections to the amplitude remains the same

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

14/17

Effective relativistic Hamiltonian

$$H = H_0 + \Delta U_1 + \Delta U_2 + \Delta U_3,$$

$$H_0 = \sqrt{\mathbf{p}^2 + m_1^2} + \sqrt{\mathbf{p}^2 + m_2^2} - m_1 - m_2 - \frac{C_F \tilde{\alpha}_s}{r} + Ar + B,$$

$$\Delta U_1(r) = -\frac{C_F \alpha_s^2}{4\pi r} [2\beta_0 \ln(\mu r) + a_1 + 2\gamma_E \beta_0],$$

$$\Delta U_2(r) = -\frac{C_F \alpha_s}{2m_1 m_2 r} \left[\mathbf{p}^2 + \frac{\mathbf{r}(\mathbf{rp})\mathbf{p}}{r^2} \right] + \frac{1}{2}\pi C_F \alpha_s \left(\frac{1}{m_1^2} + \frac{1}{m_2^2} \right) \delta(\mathbf{r}) - \frac{C_F \alpha_s}{2m_1 m_2} \left[\frac{\mathbf{S}^2}{r^3} - 3\frac{(\mathbf{Sr})^2}{r^5} - \frac{4\pi}{3} (2\mathbf{S}^2 - 3)\delta(\mathbf{r}) \right] - C_A C_F \alpha_s^2 \frac{(m_1 + m_2)}{4m_1 m_2 r^2},$$

$$\Delta U_3(r) = f_V \left[\frac{A}{4r} \left(\frac{1}{m_1^2} + \frac{1}{m_2^2} \right) + \frac{4A}{3m_1 m_2 r} \mathbf{S}_1 \mathbf{S}_2 + \frac{A}{3m_1 m_2 r} \left(\frac{3}{r^2} (\mathbf{S}_1 \mathbf{r}) (\mathbf{S}_2 \mathbf{r}) - \mathbf{S}_1 \mathbf{S}_2 \right) \right].$$
(16)

'Rationalization' of the kinetic energy term:

$$T = \sqrt{\mathbf{p}^2 + m_1^2} + \sqrt{\mathbf{p}^2 + m_2^2} \approx 2 \times \frac{\mathbf{p}^2}{2\tilde{\mu}} + \frac{1}{2} \left(\frac{m_1^2}{\tilde{m}_1} + \frac{m_2^2}{\tilde{m}_2} \right),$$

$$\tilde{\mu} = \frac{2\tilde{m}_1\tilde{m}_2}{\tilde{m}_1 + \tilde{m}_2}, \qquad \tilde{m}_{1,2} = \sqrt{\mathbf{p}_{\text{eff}}^2 + m_{1,2}^2}.$$
 (17)

Trunin A. Relativistic corrections to the pair B_c mesons production in proton–proton collisions

Nonrelativistic result:

$$d\sigma[gg o B_c + ar{B}_c](s,t) = rac{\pi M^2 lpha_s^4}{65\,536\,s^2} |R(0)|^4 F^{(1)}(s,t)$$

Nonrelativistic result:

$$d\sigma[gg o B_c + \bar{B}_c](s,t) = \frac{\pi M^2 \alpha_s^4}{65\,536\,s^2} |R(0)|^4 F^{(1)}(s,t)$$

Relativistic result:

$$d\sigma[gg \to B_c + \bar{B}_c](s,t) = \frac{\pi M^2 \alpha_s^4}{65536 s^2} |\tilde{R}(0)|^4 \times [F^{(1)}(s,t) - 4(\omega_{01} + \omega_{10} - \omega_{11})F^{(1)}(s,t) - 4m_c^{-1}m_b^{-1}(m_c^2\omega_{\frac{1}{2}\frac{3}{2}} + m_b^2\omega_{\frac{3}{2}\frac{1}{2}})F^{(1)}(s,t) + 6(\omega_{01} + \omega_{10})^2 F^{(1)}(s,t) + \omega_{\frac{1}{2}\frac{1}{2}}(1 - 3\omega_{01} - 3\omega_{10})F^{(2)}(s,t) + \omega_{\frac{1}{2}\frac{1}{2}}F^{(3)}(s,t)]$$

Nonrelativistic result:

$$d\sigma[gg o B_c + \bar{B}_c](s,t) = \frac{\pi M^2 \alpha_s^4}{65\,536\,s^2} |R(0)|^4 F^{(1)}(s,t)$$

Relativistic result:

$$d\sigma[gg \to B_c + \bar{B}_c](s,t) = \frac{\pi M^2 \alpha_s^4}{65536 s^2} |\tilde{R}(0)|^4 \times [F^{(1)}(s,t) - 4(\omega_{01} + \omega_{10} - \omega_{11})F^{(1)}(s,t) - 4m_c^{-1}m_b^{-1}(m_c^2\omega_{\frac{1}{2}\frac{3}{2}} + m_b^2\omega_{\frac{3}{2}\frac{1}{2}})F^{(1)}(s,t) + 6(\omega_{01} + \omega_{10})^2 F^{(1)}(s,t) + \omega_{\frac{1}{2}\frac{1}{2}}(1 - 3\omega_{01} - 3\omega_{10})F^{(2)}(s,t) + \omega_{\frac{1}{2}\frac{1}{2}}F^{(3)}(s,t)]$$

Relativistic generalization of $R(0) = \sqrt{\frac{2}{\pi}} \int R(p)p^2 dp$:

$$\tilde{R}(0) = \sqrt{\frac{2}{\pi}} \int_0^\infty \sqrt{\frac{(\epsilon_c(p) + m_c)(\epsilon_b(p) + m_b)}{2\epsilon_c(p) 2\epsilon_b(p)}} R(p) p^2 \, dp, \tag{18}$$

Nonrelativistic result:

$$d\sigma[gg \to B_c + \bar{B}_c](s,t) = \frac{\pi M^2 \alpha_s^4}{65\,536\,s^2} |R(0)|^4 F^{(1)}(s,t)$$

Relativistic result:

$$d\sigma[gg \to B_c + \bar{B}_c](s,t) = \frac{\pi M^2 \alpha_s^4}{65536 s^2} |\tilde{R}(0)|^4 \times [F^{(1)}(s,t) - 4(\omega_{01} + \omega_{10} - \omega_{11})F^{(1)}(s,t) - 4m_c^{-1}m_b^{-1}(m_c^2\omega_{\frac{1}{2}\frac{3}{2}} + m_b^2\omega_{\frac{3}{2}\frac{1}{2}})F^{(1)}(s,t) + 6(\omega_{01} + \omega_{10})^2 F^{(1)}(s,t) + \omega_{\frac{1}{2}\frac{1}{2}}(1 - 3\omega_{01} - 3\omega_{10})F^{(2)}(s,t) + \omega_{\frac{1}{2}\frac{1}{2}}F^{(3)}(s,t)]$$

Relativistic generalization of $R(0) = \sqrt{\frac{2}{\pi}} \int R(p)p^2 dp$:

$$\tilde{R}(0) = \sqrt{\frac{2}{\pi}} \int_0^\infty \sqrt{\frac{(\epsilon_c(p) + m_c)(\epsilon_b(p) + m_b)}{2\epsilon_c(p) 2\epsilon_b(p)}} R(p) p^2 \, dp, \tag{18}$$

$$I_{nk} = \int_{0}^{m_{c}} p^{2} R(p) \sqrt{\frac{(\epsilon_{c}(p) + m_{c})(\epsilon_{b}(p) + m_{b})}{2\epsilon_{c}(p) 2\epsilon_{b}(p)}} \left(\frac{\epsilon_{c}(p) - m_{c}}{\epsilon_{c}(p) + m_{c}}\right)^{n} \left(\frac{\epsilon_{b}(p) - m_{b}}{\epsilon_{b}(p) + m_{b}}\right)^{k} dp,$$

$$\omega_{nk} = \sqrt{\frac{2}{\pi}} \frac{I_{nk}}{\tilde{R}(0)}, \quad 0 < n + k \le 2.$$
(19)

Trunin A. Relativistic corrections to the pair B_c mesons production in proton-proton collisions 16/17

Numerical results

Energy \sqrt{S}	B _c mesons pair	CTEQ5L		CTEQ6L1	
		$\sigma_{\sf nonrel.}$, nb	$\sigma_{\rm rel.}$, nb	$\sigma_{\sf nonrel.}$, nb	$\sigma_{\rm rel.}$, nb
$\sqrt{S} = 7$ TeV	$B_c^*+ar{B}_c^*$ $(S=1)$	0.96	0.46	0.88	0.42
	$B_c + \bar{B}_c \ (S=0)$	0.57	0.62	0.52	0.56
$\sqrt{S} = 14$ TeV	$B_c^*+ar{B}_c^*$ $(S=1)$	2.1	1.0	1.8	0.88
	$B_c + \bar{B}_c \ (S=0)$	1.2	1.3	1.1	1.2

 $\sigma[pp \rightarrow 2J/\psi + X] = 23.0 \text{ (nonrel.)}$ 9.6 (rel.) nb

(20)

Numerical results

Energy \sqrt{S}	B _c mesons pair	CTEG	Q5L	CTEQ6L1		
		$\sigma_{\sf nonrel.}$, nb	$\sigma_{\rm rel.}$, nb	$\sigma_{\sf nonrel.}$, nb	$\sigma_{\rm rel.}$, nb	
$\sqrt{S} = 7$ TeV	$B_c^* + \bar{B}_c^* \ (S=1)$	0.96	0.46	0.88	0.42	
	$B_c + \bar{B}_c \ (S=0)$	0.57	0.62	0.52	0.56	
$\sqrt{S} = 14$ TeV	$B_c^* + \bar{B}_c^* \ (S=1)$	2.1	1.0	1.8	0.88	
	$B_c + \bar{B}_c \ (S=0)$	1.2	1.3	1.1	1.2	

$$\sigma[pp \rightarrow 2J/\psi + X] = 23.0 \text{ (nonrel.)}$$
 9.6 (rel.) nb

(20)

Different sources of corrections:

- wave function decrease (~ 3 times)
- amplitude exp increase $(+30\% \text{ and } \times 2)$
- bound energy increase (+30 40%)

In total: decrease (-50%) for B_c^* some growth (+10%) for pseudoscalar B_c

Numerical results

Energy \sqrt{S}	B _c mesons pair	CTEG)5L	CTEQ6L1		
		$\sigma_{\sf nonrel.}$, nb	$\sigma_{\rm rel.}$, nb	$\sigma_{\sf nonrel.}$, nb	$\sigma_{\rm rel.}$, nb	
$\sqrt{S} = 7$ TeV	$B_c^* + \bar{B}_c^* \ (S=1)$	0.96	0.46	0.88	0.42	
	$B_c + \bar{B}_c \ (S=0)$	0.57	0.62	0.52	0.56	
$\sqrt{S} = 14$ TeV	$B_c^* + \bar{B}_c^* \ (S=1)$	2.1	1.0	1.8	0.88	
	$B_c + \bar{B}_c \ (S=0)$	1.2	1.3	1.1	1.2	

 $\sigma[pp \rightarrow 2J/\psi + X] = 23.0 \text{ (nonrel.)}$ 9.6 (rel.) nb

(20)

Different sources of corrections:

- wave function decrease (\sim 3 times)
- amplitude exp increase $(+30\% \text{ and } \times 2)$
- bound energy increase (+30 40%)

In total: decrease (-50%) for B_c^* some growth (+10%) for pseudoscalar B_c

As usual for this kind of calculations, the theoretical errors are expected to be as large as 50%

Thank you for attention!