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Anisotropy coefficients

Non central Au+Au collisions :

 interaction between constituents leads to a pressure v
gradient => spatial asymmetry is converted to an | L,
asymmetry in momentum space => collective flow S@" , & X
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Direct flow and Quark—Gluon Plasma
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“Softest point”

D.H. Rischke, Y. Pursun, J.A. Maruhn, H. Stoecker, W. Greiner,
Heavy lon Phys. 1, 309 (1995)



Antiflow of nucleons at the softest point of the EoS

Au+Au (8 AGeV)
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EoS is softened either by a phase transition to QGP,
or by the creation of resonances and string-like excitations

J. Brachmann, S. Soff, A. Dumitru, Y. Stoecker, J.A. Maruhn, W. Greiner, L.V. Bravina, D.H.
Rischke, Phys. Rev. C61 (2000) 024909



Third flow component as QGP signal

Au+Au
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The effect shows up in the reaction
plane as enhanced emission which is
orthogonal to the directed flow.



Collective flow signals of the Quark—-Gluon Plasma

H. Stocker, Nucl. Phys. A 750, 121 (2005)
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e Early hydro calculation predicted the “softest
point” at E,_ = 8 AGeV
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e Alinear extrapolation of the data (the arrow)

suggests a collapse of flow at E
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Recent measurements of v, of identified hadrons
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Parton Hadron String Dynamics

. From hadrons to OGP: (Kadanoff-Baym eqs.)

s Initial A+A collisions: N .
- string formation in primary NN collisions % 7 %5%%,
- strings decay to pre-hadrons (B - baryons, m — mesons)

s Formation of QGP stage by dissolution of pre-hadrons = QGP phase:
Into massive colored quarks + mean-field energy € > Egitical
based on the Dynamical Quasi-Particle Model (DQPM)

which defines quark spectral functions, masses My(s) and widths 7 (&)
+ mean-field potential U, at given &— local energy density
( related by IQCD EoS to T - temperature in the local cell)
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Parton Hadron String Dynamics

|1. Partonic phase - QGP:

s In self-generated mean-field potential for quarks and
gluons U, U, from the DQPM
s EO0S of partonic phase: ,crossover‘ from lattice QCD
(fitted by DQPM)
s (quasi-) elastic and inelastic parton-parton interactions:

using the effective cross sections from the DQPM
s quarks and gluons (= ,dynamical quasiparticles*)

with off-shell spectral functions (width, mass) defined by

the DQPM
IIl1. Hadronization: based on DQPM %8 o %

s massive, off-shell (anti-)quarks with broad spectral
functions hadronize to off-shell mesons and baryons or
; color neutral excited states - ,strings* (strings act as
B doorway states® for hadrons)

M |V. Hadronic phase: hadron-string interactions — off-shell HSD




PHSD: multiplicities at midrapidity @

"Au+Au, b=2fm
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e Transport approach works reasonably good

« Deviations from the data appear for HSD at Vs > 20 GeV

A. Andronic, P. Braun-Munzinger and J. Stachel, Nucl. Phys. A772, 167 (2006) n



PHSD: snapshot of the reaction planey
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e Color scale: baryon number density
o Black levels: parton density 0.6 and 0.01 fm3

e Red arrows: local velocity of baryon matter
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PHSD: <p,/N>aty = +0.25
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e Averaged over ~ 80 000 collisions

e Directed flow v, is formed at an early stage of the nuclear
Interaction.

o Baryons are reaching positive and mesons — negative value of v,
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antiproton | pion 1

_ - Directed flow from
“lme | PHSD/HSD

e Both models HSD and PHSD
reproduce general trends of recent
STAR results

e Protons and pions are reasonably
described by both models

e Antiprotons in PHSD are produced
dominantly from hadronization at
highest energies

e PHSD and HSD coincide at lower
energies => dominance of hadronic
matter and hadronic reaction
channels (absorption and recreation)
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STAR Collaboration, PRL 112, 162301 (2014) ,,



PHSD: Characteristic slope of vl(Y) @

oal a) proton I I ‘1*:.‘;:'-'II'_!|LR 1 . .
- vessnas] e The slope of v, (y) at midrapidity:
—PHSD 1
s 4 dv
0.05 | -- HSD i F=211
. d.y _:,‘_=I}

is used to characterize the directed flow

e Fitv,(y) = Fy was used in the rapidity
window -0.5<y<0.5

e Proton slopes are in qualitative
agreement but overestimate the STAR
data at 7 < s < 15 GeV; HSD results
are close to UrQMD

e UrQMD model fails to reproduce pion
and antiproton slopes

e PHSD/HSD work better due to
Including inverse processes for
antiproton annihilation

A IGeV] 1w STAR Collaboration, PRL 112, 162301 (2014) 15
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Stability of the obtained slopes
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« Fluctuation of detemnined experimentally event plane doesn't
chanoge the result,

« Addition of cubic temm to the fit v, = Fy + Cy? gives similar result
biut increase uncetainties.
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Baryon - target projectile
Stopping =
AL Produced particles S freban
Sl populate mid-rapidity 8
Model = fireball fluid é
2
(x,p) Z filz,p)
momentum along beam
. Ho_ Hy v v
Target-llke fluid: dudy =0 O Ty =—Fi + Fy
Leading particles carry bar. charge exchange/emission
Projectile-like fluid:  9,J; =0, OuTp =—Fp

Fireball fluid: JI =0,

Baryon-free fluid

nwY _ rcu v v 1%
OuTe™ =Fp + Fip—Ff, — F
Source term  Exchange

The source term is delayed due to a formation time 7 ~ 1 fm/c

Total energy-momentum conservation:

8#(7-5&) _|_ T;U,.L:' _|_ TI:(LL") — 0

Yu.B. Ivanov, V.N. Russkikh and V.D. Toneev, Phys. Rev. C73, 044904 (2006)

17



. . 3-Fluid D '
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Equation of state (EoS) s
Hadronic EoS (hadr-EoS) " j‘““’““"’“’*"s ]

[Galitski, Mishustin, Sov. J. Nucl. Phys, 29, 181 (1979) ]

Crossover E0S
[Khvorostukhin, Skokov, Redlich, Toneey,
EPJ, C48, 571 (2006)]

1t-order phase transition to QGP (2ph- EoS) "
[Khvorostukhin, et al.,, EPJ, C48, 571 (2006)] > e”é -
0.6 B—O
Phase transition «» EO0S softening o2
(in dense baryon matter) JOlf

e Freeze-out energy density: g, =0.4 GeV/fm?3 EEZ

e Friction: estimated and tuned 0.02 : :
e Formation time: t=2 fm/c for H-EoS and Y S T Y B BT,
1=0.33 fm/c for 2ph-EoS ¢ (GeV/fm®) ¢ (GeV/fm’)




3FD: multiplicities at midrapidity
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e Deviations from data appear for H-EoS at Vs > 20 GeV and

antiproton yield is overestimated regularly. Crossover is OK.
A. Andronic, P. Braun-Munzinger and J. Stachel, Nucl. Phys. A772, 167 (2006) 19



3-Fluid Dynamics

3FD: directed flow vs. E0S

pions
& STAR mr|
+STAR n*

‘ T ] T
v antiprotons
"-t O STAR

| « Crossover EoS agrees
better with the
experiment than the
pure hadronic EoS

—| o Description of the
STAR v,(y) is not very
well and relatively
worse than for the
PHSD

y y ¥ STAR Collaboration, PRL 112, 162301 (2014)



3FD: excitation function of v, slopes

e 3-Fluid Dynamic approach
(3FD) gives reasonable
results for proton and pion
slopes of v, and fails at
7.7 GeV for antiprotons

[ =— 3FI): crossover
.0.2 - — 3FD: hadron

| e Discrepancies between

1 the 3FD model and STAR
| data are smaller in the
case of crossover

© STAR Collaboration, PRL 112, 162301 (2014) ,,
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3FD: comparison with other models
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3-Fluid Dynamics

3-Fluid Dynamic approach (3FD)
gives reasonable results for proton
and pion slopes of v, and fails at
7.7 GeV for antiprotons

Discrepancies between 3FD model
and STAR data are smaller in case
of crossover.

Recent hydrodynamical and hybrid
(hydro+kinetic) results are shown in
comparison with [1].

They fail to reproduce data by an
order of magnitude for both chiral y
and Bag Model (BM) EoS.

[1] J. Steinheimer, J. Auvinen, H. Petersen, M.
Bleicher, H. Stocker, Phys. Rev. C89, 054913 (2014).
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c.m. longitudinal rapidity fluctuation
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Electric field E, In the transverse plane

Cu+Au (200 GeV) Au+Au (200 GeV)
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In the overlapping region of asymmetric peripheral
collisions a finite electric current appears to be directed
from the heavy nuclei to light one.



Charge-dependent distributions of v,
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Summary

> The microscopic Parton-Hadron-String-Dynamics (PHSD) transport approach
reproduces the general trend in the v, (y) excitation function in the energy
range \s =7.7-39 GeV and leads to an almost quantitative agreement for
protons, antiprotons and pions especially at higher energies. We don't see any
"wiggle-like" irregularities as expected by early 2ph EoS hydro calculations.

> |nclusion of antiproton annihilation into several mesons as well as inverse
processes (the detail balance principle ! ) in HSD/PHSD helps to reproduce
antiproton directed flow (in contrast to UrQMD).

> 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion

slopes of v, and fails at 7.7 GeV for antiprotons, which nevertheless is much
better than the recent hydrodynamics and hybrid (hydro+kinetic) results.

> The whole body of experiment data agrees better with crossover EoS rather
than with pure hadronic or 2ph ones.

> The use of charge-dependent v, is a very promising tools.

> Application to MPD (Ns<11.5 GeV) and BM@N (E,,,<4.5 A-GeV) (“horn” ?) e
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