

ISHEPP XXII September 15-20, 2014

Alexander Titov

Cumulative photon emission off electron in in intensive ultra-short electromagnetic fields

[Quantum processes in intensive short electromagnetic fields] Hunt form mulpti-photon events

in collaboration with

Burkhard Kampfer (Helmholtz Zentrum Dresden-Rossendorf, Germany)

Hideaki Takabe Atsushi Hosaka, Takuya Shibata and Osaka University)

arXiv:1408.1040 [hep-ph] Phys. Rev. A 87, 042106 (2013) Phys. Rev. Lett. 108, 240406 (2012) Phys. Lett. B, 715, 246 (2012) Phys. Rev D 83, 053008 (2011) Phys. Rev. ST Accel. Beams 12, 111301 (2009)

Baldin ISHEPP XXII 19/09/14

Motivation:

In QED a motion of charge particle in EM field is described by Lagrangian

$$\mathcal{L}^{\mathsf{em}} = -i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - M_{e}\bar{\psi}\psi - e\bar{\psi}\gamma \cdot A\psi - \frac{1}{4}F_{\mu}F^{\mu\nu}$$

In case of interaction of an electron with single photon(s) $|A^{s.p.}| \sim |\varepsilon_{\lambda}| = 1$

this theory has a small parameter $\alpha = \frac{e^2}{4\pi} = \frac{1}{137}$ in other words, EM field does not

disturb (modify) the plane wave solution ψ_e^{PW} of Dirac equation for electron in EM field

$$(i \nabla - eA - m) \psi_p = 0 \rightarrow (i \nabla - m) \psi_p^{PW} = 0$$

 $\psi_p(x) \simeq \psi_p^{PW}(x) = \left(u_p / \sqrt{2E_p} \right) e^{-ip \cdot x},$

Perturbation technique + Feynman rules → "Linear Electrodynamics" (conventionally)

Multi-photon processes with N photons are treated as the multi-step events and suppresses as α^N

Baldin ISHEPP XXII 19/09/14

Motivation (continuation)

When an electron is moving in a strong background EM field with LARGE |A|

$$|A| \gg |A^{s.p.}|$$

$$(i \not \nabla - eA - m) \psi_p \neq (i \not \nabla - m) \psi_p^{PW}$$

 $\psi_e(x) \neq \psi_e^{PW}(x)$

EM interaction becomes essentially non-linear → "Nonlinear Electrodynamics"

Multi-photon events are not suppressed : charge particle may interact with N photons simultaneously.

Wanted: theory must describe "elementary" quantum processes in strong and "short" EM pulses It has its own basic interest

May be used as an input for transport approachs in investigation of
plasma preperties in strong EM field ...Baldin ISHEPP XXII 19/09/14

Laser pulse may be consider as a source of strong background field

$$|\vec{E}|^2 \sim |\vec{A}|^2 \sim I$$

EM field Pulse intensity $|\vec{E}|(\frac{V}{cm}) \simeq 19.4\sqrt{I(\frac{W}{cm^2})}$

 UK [VULCAN, HiPER (@Central Laser Facility (CLF))]

 EC [Extreme Laser Infrastructure (ELI)]

 France [APPOLON (@Institute de Lumiere Extreme (ILE))]

 US [TPL (Texas), (BELLA) Berkley,]

Japan (ILE (GEKKO-LFEX ..) Spring-8 ...)

```
Russia (PEARL (Nizhnij Nivgorod))
```

A.Di Piazza, C.Muller, *et al.*, *Rev. Mod. Phys. 84*, 1177 (2012) G. Mourou, T. Tajima, S. V. Bulanov *Rev. Mod. Phys. 78*, 309 (2006)

```
Laser Intensities I \sim 10^{22} - 10^{25} W/cm<sup>2</sup>

Pulse duration \tau = 5, 10, 20, ... fs , 1 \text{ fs} = 10^{-15} sec

\tau_0 (one oscillation) = 3...8 fs

optical laser
```

Outline

Introduction:

Volkov solution of Dirac equation in Strong EM fields and its applications forinfinitely long pulse $N_{oscillations} >>> 1$ Ritus et al.,

'64~'70

+ Compton scattering in short EM pulses $N_{\text{oscillations}} = 2 \sim 10$

Compton scattering in sub-cycle EM pulses Noscillations < 1</p>

Quantum processes at sub-cycle pulses

+ Summry

Electron in a strong electromagnetic field

D.M. Volkov, Z. Phys. 94, 250 (1935)

Über eine Klasse von Lösungen der Diracschen Gleichung.

A class of solutions of the Dirac equation

1. Der Fall eines sinusoidalen Feldes. — 2. Lösung für den Fall, daß das äußere Feld aus polarisierten, in einer bestimmten Richtung fortschreitenden Wellen besteht, die ein *abzählbares* Spektrum nach Frequenz und Anfangsphasen haben.

LL v.4, §40 (BLP)

 $(i\nabla - eA + m)(i\nabla - eA - m)\psi_p = 0$, Second order Dirac equation

Solution for

special case $A = A(\phi)$ with $\phi = k \cdot x = \omega t - kz \longrightarrow plane$ wave

$$\psi_{p} = \left[1 + \frac{e(\gamma \cdot k)(\gamma \cdot A)}{2(k \cdot p)}\right] \frac{u_{p}}{\sqrt{2E_{p}}} e^{-ip \cdot x} \cdot e^{iS(\phi)} - phase factor$$

$$spinor modification \qquad S(\phi) = -\int_{0}^{kx} \left[\frac{e(p \cdot A)}{(k \cdot p)} - \frac{e^{2}A^{2}}{2(k \cdot p)}\right] d\phi'$$

when
$$\vec{A} \to 0$$
 $\psi_p \to \psi_p^{PW} = \frac{u_p}{\sqrt{2E_p}} e^{-ip \cdot x}$

Dirac solution for free electron

Baldin ISHEPP XXII 19/09/14

effective mass

"quasi-momentum" and effective mass define energy-momentum conservation in processes with electrons (in infinite pulse !) Baldin ISHEPP XXII 19/09/14

7

Dependance of reduced field strengh ξ^2 on laser pulse intensity I at different wavelength λ

Compton scattering for infinitely long pulse

$$T_{fi} = -ie \int \bar{\psi}_{e^-}(\gamma \cdot \varepsilon'(\gamma'))\psi_{e^+} e^{-ik' \cdot x} \frac{d^4x}{\sqrt{2\omega'}} ,$$

$$\frac{\bar{u}_{p'}}{\sqrt{2q'_0}} e^{iq' \cdot x} \left[1 + \frac{e(\gamma \cdot A)(\gamma \cdot k)}{2(k \cdot p')} \right] e^{+i \int_{0}^{k \cdot x} \frac{e(p' \cdot A)}{(k \cdot p')} d\phi'} \left[1 + \frac{e(\gamma \cdot k)(\gamma \cdot A)}{2(k \cdot p)} \right] e^{-i \int_{0}^{k \cdot x} \frac{e(p \cdot A)}{(k \cdot p)} d\phi'} \frac{v_p}{\sqrt{2q_0}} e^{iq \cdot x}$$

$$T_{fi} = \frac{-ie}{\sqrt{2q_0 2q'_0 2\omega'}} \int M_{fi}(kx) e^{-i(k'-q+q')x} d^4x \qquad \neq (2\pi)^4 \delta^4(k-k'+q-q') \cdot M$$

$$M_{fi}(kx) = \sum_{n=-\infty}^{\infty} e^{-in \, k \cdot x} \, M_{fi}(n) \qquad \qquad Fourier \ series \\ for \ functions \ defined \ in \ all \ space$$

$$T_{fi} = \frac{-ie}{\sqrt{2q_0 2q'_0 2\omega'}} \sum_{n=n_{\min}}^{\infty} M_{fi}(n) (2\pi)^4 \,\delta^4(nk + q - k' - q')$$

$$M_{fi}(\phi) = \bar{u}_{p'} \left[\hat{M}^{(0)} + \hat{M}^{(1)} \cos \phi + \hat{M}^{(2)} \sin \phi \right] v_p e^{-iz \sin(\phi - \phi_0)}, \quad \phi = k \cdot x,$$

$$M_{fi}(n) = \bar{u}_{p'} \left[\hat{M}^{(0)} B_n^{(0)} + \hat{M}^{(1)} B^{(1)} + \hat{M}^{(2)} B^{(2)} \right] v_p$$

$$\hat{M}^{(0)} = \not{\epsilon}' - \frac{e^2 |a|^2 (\varepsilon' \cdot k)}{2(k \cdot p)(k \cdot p')}, \qquad \hat{M}^{(1,2)} = -e^{\not{\epsilon}' \not{k} \not{\phi}_{1,2}} + e^{\not{\phi}_{1,2} \not{k} \not{\epsilon}'} \frac{e^{\not{\phi}_{1,2} \not{k} \not{\epsilon}'}}{2(k \cdot p)} \frac{19/09/14}{4}$$

Differential cross section (infinite pulse)

 $w^{(n)} = -2J_n^2(z) + \xi^2 (1 + \frac{u^2}{2(1+u)}) [J_{n-1}^2(z) + J_{n+1}^2(z) - 2J_n^2(z)]$

$$u = \frac{k \cdot k'}{k \cdot p'}$$
, $z^2 = \frac{4n^2 \xi^2}{1+\xi^2} \frac{u}{u_n} (1 - \frac{u}{u_n})$, $u_n = 2n \frac{p \cdot k}{M_e^2 (1+\xi^2)}$,

Differential cross section at fixed angle (inf. pulse)

$$\frac{d\sigma}{d\omega'_L} = \frac{4\pi\alpha^2 M_e^2}{(s-M_e^2)\,\xi^2} \sum_{n=1}^{\infty} \frac{1}{p_L - n\omega_L} w^{(n)}$$
$$w^{(n)} = -2J_n^2(z) + \xi^2 (1 + \frac{u^2}{2(1+u})) [J_{n-1}^2(z) + J_{n+1}^2(z) - 2J_n^2(z)]$$
$$u = \frac{k \cdot k'}{k \cdot p'}, \qquad z^2 = \frac{4n^2\xi^2}{1+\xi^2} \frac{u}{u_n} (1 - \frac{u}{u_n}), \quad u_n = 2n \frac{p \cdot k}{M_e^2(1+\xi^2)},$$

Compton scattering process in a short e.m. pulse Short circularly polarized pulse:

$$M_{fi}(kx) = \int_{-\infty}^{\infty} dl \mathrm{e}^{-il\,k\cdot x} M_{fi}(l)$$

Fourier integral for functions limited in configuration space

$$T_{fi} = \frac{-ie}{\sqrt{2p_0 2p'_0 2\omega'}} \int_{\zeta}^{\infty} dl \, M_{fi}(l) (2\pi)^4 \delta^4 (lk + p - k' - p'),$$

Baldin ISHEPP XXII 19/09/14 ¹²

Comparison between infinite and finite pulses

$$M_{fi}(n) = \sum_{i=0}^{2} M^{(i)} B_n^{(i)} ,$$
$$B_n^{(i)} = B [J_{n\pm 1}, J_n]$$
$$J_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \, e^{il\phi - iz\sin(\phi - \phi_e)}$$
$$\phi = k \cdot x$$

 $M_{fi}(l) = \sum_{i=0}^{3} M^{(i)} C^{(i)}(l) ,$ $C^{(i)}(l) = C [\mathcal{Y}(l \pm 1), (\mathcal{Y}(l)]]$ $\mathcal{Y}(l) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\phi e^{il\phi - i\mathcal{P}(\phi)} f(\phi)$ with $\mathcal{P}(\phi) = z \int_{-\infty}^{\phi} d\phi' \cos(\phi' - \phi_e) f(\phi')$ $- \xi^2 \zeta u \int_{-\infty}^{\phi} d\phi' f^2(\phi') .$

 $W = \sum_{n} [one - dimentional integral] W = [five - dimentional integral]$

Pulse envelope functions

One parameter functions

hyperbolic secant (hs)

14

Differential cross section (short pulse)

Dependence on field intensity (short pulse)

Dependence on the laser frequency

Baldin ISHEPP XXII 19/09/14 ¹⁷

Partly-integrated (cumulative)cross section

Ultra-short pulse

19

Dependence on the field intensity for sub-cycle/short pulse

$$\kappa = \omega'/\omega'_1 = 3$$

Baldin ISHEPP XXII 19/09/14²⁰

Sub-threshold effect is only at $\kappa > 1$!!!

when
$$\kappa = \omega'/\omega_1' = 0.5 < 1$$

 $\tilde{\sigma} \simeq \sigma_{\text{tot}} = \text{constant}$

Summary

+ Elaborated a method for calculating the quantum processes in a short and intensive EM fields (laser pulses) in a wide range of pulse intensities for different shapes and duration.

The short pulses "generates" high momentum components which produce a great amplifier effect for the multi-photon, sub-threshold events. Enhancement may reach many orders of magnitude depending on the field intensity and the beam shape, (relative to the infinite pulse)!

+ Clarified the range of applicability of IPA

Compton scattering

+ Analyzed some subtle effects in particle production off a laser beam (anisotropies and asymmetries), $\overline{\nu}\nu$ production etc.

+ Developed a number of simple, asymptotic expressions for small $\xi^2 \ll 1$ Baldin ISHEPP XXII 19/09/14 ²²

THE END

Thank you very much for attention.

Baldin ISHEPP XXII 19/09/14

Photon production at very large EM field intensity (rate)

Balain ISHEPP XXII 19/09/14

Lasers planned for the Extreme Light Infrastructure*					
Country	Facility focus	Power (PW)	Pulse energy (J)	Pulse width (fs)	Rep rate (Hz)
Romania	Nuclear physics	10 (×2)	200	20	0.1
Hungary	Attosecond physics	1	5	5	1000
		20	400	20	0.1
Czech Republic	Secondary beam radiation, high-energy particles	1	10	10	10
		5	50	10	10
		10 (×2)	200	20	0.1
To be determined	High intensity	10 beams of 10–20 PW each, phased and combined to create total power of 100–200 PW			
*Laser parameters still subject to change.					

FIG. 1 (color online). Summary of the four pillars of ELI. A power value of $10(\times 2)$ PW indicates the availability of two laser systems each with 10-PW power. From Feder, 2010.