The differential cross section in the dp-elastic scattering at the energies from 500 to $1000 \mathrm{MeV} /$ nucleon

A.A Terekhin et al.

Joint Institute for Nuclear Research, Dubna, Russia

Introduction

The purpose of DSS (Deuteron spin structure) project is the broadening of the energy and angular ranges of measurement of different observables in processes including 3-nucleon systems. The study of the dp-elastic scattering at various energies in large angle range is one of directions in this domain.

The experimental setup at internal target station (ITS) at Nuclotron allows us to obtain the different observables at angle range $60-140^{\circ}$ in the c.m.s. We shown in this presentation preliminary data of differential cross section for dp-elastic scattering at 500, 650,750 and $1000 \mathrm{Mev} / \mathrm{n}$, obtained at ITS Nuclotron.

Energy, MeV/n	Engle range in c.m.s.	Cite
425	27.87-180	Booth,1971
470	91-163	Alder,1972
580	30-180	Vincent,1970
582	16.9-166.2	Boschitz,1972
590	92.7 - 163.8	Alder,1972
594	60-150	Albrow,1971
641.3	34.89-115.22	Culmez, 1991
792.7	34.43-139.78	Culmez, 1991
796 (dsigma/dt)	7.97 - 22.80	Irom, 1983
800	14.1-153.5	Winkelmann,1980
1000	10-180	Bennett, 1967

Measurements on the Internal target station

Layout of the counters with respect to the beam direction
$500-900 \mathrm{MeV} / \mathrm{n}$

$$
\begin{aligned}
\mathrm{P} & =20 \times 60 \times 20 \mathrm{~mm}^{3} \\
\mathrm{D} & =10 \times 40 \times 24 \mathrm{~mm}^{3} \\
\mathrm{PP} & =50 \times 50 \times 20 \mathrm{~mm}^{3}
\end{aligned}
$$

$1000 \mathrm{MeV} / \mathrm{n}$

VME Data Acquisition System

The VME based data acquisition system was used for the data taking from scintillation detectors.

TTCM

TQDC-16

GUI Controls

TQDC-16 - 16 - channel time and charge digitizer

Data analysis

The signal amplitudes correlation for
D and P detectors.

The subtraction of the time signal from Dand P - counters.

I - (II+III) Subtraction

CH2-C subtraction

The next stage is the $\mathrm{CH}_{2}-\mathrm{C}$ subtraction procedure. Carbon background subtraction deduced from the normalization in the interval $\mathrm{a}_{\min }<\mathrm{a}<\mathrm{a}_{\max }$, were a - channels of $\mathrm{CH}_{2^{-}}$and C -amplitude distributions. I.e.
were k - normalization coefficient, $\mathrm{N}_{\mathrm{CH} 2}$ and $\mathrm{N}_{\mathrm{C}}-\mathrm{CH}_{2}-$ and C -amplitude distributions integrals in a-interval. The carbon background can be subtracted as:

$$
N_{0}=N_{4}-1<E
$$

Differential cross section at $1000 \mathrm{MeV} / \mathrm{n}$

Squares - new data
Circles - the data obtained early for forward angles [Terekhin A.A. et al. EPJ A48, 2012. P.182.]
Triangles - Bennett G. W. et al. Phys. Rev. Lett. 1976. V. 19 P. 387-390.
Line - the theoretical calculations without DS term [Ladygina N.B. et al. EPJ A42, 2009. P.91.]

Differential cross section

$750 \mathrm{MeV} / \mathrm{n}$

Triangles - data at 641.3 MeV/n (Culmez E. Phys.Rev.C, V43, №5, 1991)

Blue triangles - data at $792.7 \mathrm{MeV} / \mathrm{n}$ (Culmez E. Phys.Rev.C, V43, №5, 1991)

Green triangles - data from $800 \mathrm{MeV} / \mathrm{n}$ (Winkelmann E. Phys.Rev.C, $500 \mathrm{MeV} / \mathrm{n}$

Blue triangles - data at $470 \mathrm{MeV} / \mathrm{n}$ (Alder J.C Phys.Rev. C6 (1972) 2010-1019)

Conclusion

- The procedure of data analysis to obtain of differential cross section is shown. The preliminary differential cross section data for dp-elastic scattering at 500,650,750 and $1000 \mathrm{MeV} / \mathrm{n}$ are obtained. The results was compared with existing data for similar values of energies.

Thank you for attention!

TQDC16 module allows to measure the amplitude and time appearance of the signal.

Each module consists of two parts, with eight channels. We can make the trigger so that a signal from one part coincides with the signal from any channel of other part. Thus trigger is very soft. In our case the coincidences of signals of D1 and P1, D1 and D2, D1 and PP2 counters may be. As a result we have a lot of triple, four-fold and five-fold coincidences.

Amplitude of one of the proton counters

Ratio of the total events to events only double coincidence for both pairs of dp-detectors
$650 \mathrm{MeV} / \mathrm{n}$

There is a peak in the region 85°. Perhaps, this is due to that the p-counter and ppcounter are wholly or partly overlap. Peak at 110° possibly due to the fact that the d-and p-counter counter overlap

$750 \mathrm{MeV} / \mathrm{n}$

$500 \mathrm{MeV} / \mathrm{n}$

16

