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2. Currie-Jordan-Sudarshan “no interaction” theorem 
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Commutation relations of the Poincare Lie algebra: 
 

[P,H]=0,    [Ji,Pj]=iћεijkPk,   [Ki,Pj]=-(iћ/c2)Hδij,    [K,H]=-iћP,     
[Ri,Pj]= iћδij, .... 
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Lorentz transformations for times and positions of events 
 

x’ = x cosh θ – ct sinh θ 
t’ = -(x/c) sinh θ + t cosh θ 

xj(t) = eiH0txje
-iH0t = xj(0)+vjt 
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2. Interactions V and Z must be chosen so that all Poincare  
commutators are preserved, e.g., 

  
[Ki0 + Zi,Pj] = -(iћ/c2)(H0 + V)δij 
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Lorentz transformations are not valid 
 

x’ ≠ x cosh θ – ct sinh θ 
t’ ≠ -(x/c) sinh θ + t cosh θ 

xj(t) = ei(H0+V)txj(0)e-i(H0+V)t = xj(0)+vjt+ajt
2/2+…  
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“...the combined assumptions of Lorentz symmetry and Lorentz  
transformation of particle positions rule out any interaction.” 

How to resolve this paradox? 
• reject Lorentz (Poincare) symmetry?   No. 
• reject Hamiltonian dynamics?  No. 
• reject existence of particle positions?  No. 
• reject existence of particles?  No. 
• reject Lorentz transformations for positions (and momenta) of 
      interacting particles?  Yes! 
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in the moving frame (Wigner-Dirac theory) ω(θ,t) ≈  exp(-χ) + Δ(χ,θ)  

Properties of the imaginary unstable particle a: 
mass ma = 1000 MeV/c2  
width Γ = 20 MeV/c2 

The expected effect for muon (≈ 10-18 ) is too small to be observed.  

Decay law of a moving unstable particle: a relativistic model 

Corrections to Einstein’s time  
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CONCLUSIONS: 
 
 
1. In interacting systems one needs to take into account corrections  
     to usual formulas of Einstein’s special relativity. 
2. In all considered examples, these corrections are much smaller than 
     the accuracy of modern experiments. 
3.  See, however, arXiv:1211.2913! 


