Lorentz boosts in interacting systems

Eugene Stefanovich

Dubna. 17 September, 2014

OUTLINE

1. Wigner-Dirac theory of relativistic interactions
2. Currie-Jordan-Sudarshan "no interaction" theorem
3. Example: 2-particle interacting system
4. Example: $\mu-\tau$ oscillating neutrino pair
5. Example: fast moving unstable particle
6. Conclusions

Basics of relativistic quantum theory

E. Wigner, 1939:
quantum mechanics + principle of relativity $=$
Unitary representation of the Poincare group in the Hilbert space of the system

Basics of relativistic quantum theory

E. Wigner, 1939: quantum mechanics + principle of relativity $=$ Unitary representation of the Poincare group in the Hilbert space of the system

Generator of	Physical observable of	Operator
time translations	Total energy = Hamiltonian	H
space translations	Total momentum	\mathbf{P}
space rotations	Total angular momentum	J
boosts		K
	Center-of-mass position	$\mathbf{R}=-\mathbf{c}^{2} / 2\left(\mathbf{K H}^{-1}+\mathbf{H}^{-1} \mathbf{K}\right)+$ spin terms

Basics of relativistic quantum theory

E. Wigner, 1939: quantum mechanics + principle of relativity $=$
Unitary representation of the Poincare group in the Hilbert space of the system

Generator of	Physical observable of	Operator
time translations	Total energy = Hamiltonian	H
space translations	Total momentum	\mathbf{P}
space rotations	Total angular momentum	J
boosts		\mathbf{K}
	Center-of-mass position	$\mathbf{R}=-\mathbf{c}^{2} / 2\left(\mathbf{K H}^{-1}+\mathbf{H}^{-1} \mathbf{K}\right)+$ spin terms

Commutation relations of the Poincare Lie algebra:

$$
\begin{gathered}
{[P, H]=0, \quad\left[J_{i}, P_{j}\right]=i \hbar \varepsilon_{i j k} P_{k}, \quad\left[K_{i}, P_{j}\right]=-\left(i \hbar / c^{2}\right) H \delta_{i j}, \quad[K, H]=-i \hbar P,} \\
{\left[R_{i}, P_{j}\right]=i \hbar \delta_{i j}, \cdots}
\end{gathered}
$$

System of two non-interacting particles in 1D

$$
\begin{aligned}
& \mathrm{H}_{0}=\mathrm{h}_{1}+\mathrm{h}_{2} \\
& \mathrm{P}_{0}=\mathrm{p}_{1}+\mathrm{p}_{2} \\
& \mathrm{~K}_{0}=\mathrm{k}_{1}+\mathrm{k}_{2}
\end{aligned}
$$

System of two non-interacting particles in 1D

$$
\begin{array}{ll}
\mathrm{H}_{0}=\mathrm{h}_{1}+\mathrm{h}_{2} \\
\mathrm{P}_{0}=\mathrm{p}_{1}+\mathrm{p}_{2} \\
\mathrm{~K}_{0}=\mathrm{k}_{1}+\mathrm{k}_{2}
\end{array} \quad \mathrm{x}_{\mathrm{j}}(\mathrm{t})=\mathrm{e}^{\mathrm{i} \mathrm{H}_{0} \mathrm{t}} \mathrm{x}_{\mathrm{j}} \mathrm{e}^{-\mathrm{iHot}}=\mathrm{x}_{\mathrm{j}}(0)+\mathrm{v}_{\mathrm{j}} \mathrm{t}
$$

System of two non-interacting particles in 1D

$$
\begin{array}{ll}
H_{0}=h_{1}+h_{2} & x_{j}(t)=e^{i H_{0} t} x_{j} e^{-i H o t}=x_{j}(0)+v_{j} t \\
P_{0}=p_{1}+p_{2} & x_{j}(\theta, t)=e^{-i K_{0} \theta} x_{j}(t) e^{i K_{0} \theta} \\
K_{0}=k_{1}+k_{2} &
\end{array}
$$

System of two non-interacting particles in 1D

$$
\begin{array}{ll}
H_{0}=h_{1}+h_{2} & x_{j}(t)=e^{i H_{0} t} x_{j} e^{-i H 0 t}=x_{j}(0)+v_{j} t \\
P_{0}=p_{1}+p_{2} & x_{j}(\theta, t)=e^{-i K_{0} \theta} x_{j}(t) e^{i K_{0} \theta} \\
K_{0}=k_{1}+k_{2} &
\end{array}
$$

Lorentz transformations for times and positions of events

$$
\begin{gathered}
x^{\prime}=x \cosh \theta-c t \sinh \theta \\
\mathrm{t}^{\prime}=-(\mathrm{x} / \mathrm{c}) \sinh \theta+\mathrm{t} \cosh \theta
\end{gathered}
$$

Forms of Relativistic Dynamics

1．A．M．DIRAC

Forms of Relativistic Dynamics

1. A. M. DinAC

2. Generators of the Poincare Lie algebra should be modified in the presence of interactions (Dirac's instant form)

$$
\begin{aligned}
& \mathrm{H}=\mathrm{H}_{0}+\mathrm{V} \\
& \mathbf{P}=\mathbf{P}_{0} \\
& \mathbf{J}=\mathbf{J}_{0} \\
& \mathbf{K}=\mathrm{K}_{0}+Z
\end{aligned}
$$

Forms of Relativistic Dynamics

\author{

1. A. M. Dirac
 S. Jossrs Codece, Canbridge, Englind
}
2. Generators of the Poincare Lie algebra should be modified in the presence of interactions (Dirac's instant form)

$$
\begin{aligned}
& \mathrm{H}=\mathrm{H}_{0}+\mathrm{V} \\
& \mathbf{P}=\mathbf{P}_{0} \\
& \mathbf{J}=\mathbf{J}_{0} \\
& \mathrm{~K}=\mathrm{K}_{0}+Z
\end{aligned}
$$

2. Interactions V and \mathbf{Z} must be chosen so that all Poincare commutators are preserved, e.g.,

$$
\left.\left[K_{i 0}+Z_{i}\right) P_{j}\right]=-\left(i \hbar / c^{2}\right)\left(H_{0}+V\right) \delta_{i j}
$$

System of two interacting particles in 1D

$$
\begin{aligned}
& H=h_{1}+h_{2}+V \\
& P_{0}=p_{1}+p_{2} \\
& K=k_{1}+k_{2}+Z
\end{aligned}
$$

System of two interacting particles in 1D

$$
\begin{aligned}
& H=h_{1}+h_{2}+V \quad x_{j}(t)=e^{i(H 0+V) t} x_{j}(0) e^{-i(H 0+V) t}=x_{j}(0)+v_{j} t+a_{j} t^{2} / 2+\ldots \\
& P_{0}=p_{1}+p_{2} \\
& K=k_{1}+k_{2}+Z
\end{aligned}
$$

System of two interacting particles in 1D

$$
\begin{array}{ll}
H=h_{1}+h_{2}+V & x_{j}(t)=e^{i(H 0+V) t} x_{j}(0) e^{-i(H 0+V) t}=x_{j}(0)+v_{j} t+a_{j} t^{2} / 2+\ldots \\
P_{0}=p_{1}+p_{2} & x_{j}(\theta, t)=e^{-i\left(K_{0}+Z\right) \theta} x_{j}(t) e^{i\left(K_{0}+Z\right) \theta} \\
K=k_{1}+k_{2}+Z &
\end{array}
$$

System of two interacting particles in 1D

$$
\begin{array}{ll}
H=h_{1}+h_{2}+V & x_{j}(t)=e^{i\left(H_{0}+V\right) t} x_{j}(0) e^{-i\left(H_{0}+V\right) t}=x_{j}(0)+v_{j} t+a_{j} t^{2} / 2+\ldots \\
P_{0}=p_{1}+p_{2} & x_{j}(\theta, t)=e^{-i\left(K_{0}+Z\right) \theta} x_{j}(t) e^{i\left(K_{0}+Z\right) \theta} \\
K=k_{1}+k_{2}+Z &
\end{array}
$$

Lorentz transformations are not valid

$$
\begin{gathered}
x^{\prime} \neq x \cosh \theta-c t \sinh \theta \\
t^{\prime} \neq-(x / c) \sinh \theta+t \cosh \theta
\end{gathered}
$$

Relativistic Invariance and Hamiltonian Theories of Interacting Particles*

D. G. Currifit T. F. Jordan, and E. C. G. Sudarshaf

Department of Physics and Aslromomy, University of Rochester, Rochester, New York

Relativistic Invariance and Hamiltonian Theories of Interacting Particles*
 D. G. Currifit T. F. Jordan, and E. C. G. Sudarshaf
 Department of Physics and Aslromomy, University of Rochester, Rochester, New York

"...the combined assumptions of Lorentz symmetry and Lorentz transformation of particle positions rule out any interaction."

Relativistic Invariance and Hamiltonian Theories of Interacting Particles*

D. G. Currifit T. F. Jordan, and E. C. G. Sudarshaf

Department of Physics and Astromomy, University of Rochester, Rochester, New York
"...the combined assumptions of Lorentz symmetry and Lorentz transformation of particle positions rule out any interaction."

How to resolve this paradox?

- reject Lorentz (Poincare) symmetry? No.
- reject Hamiltonian dynamics? No.
- reject existence of particle positions? No.
- reject existence of particles? No.
- reject Lorentz transformations for positions (and momenta) of interacting particles? Yes!

Two particles with a fully relativistic interaction in 1D
Shields, Morris, Ware, Su, Stefanovich, Grobe, Phys.Rev. A 82 (2010) 052116

Potential: $\mathbf{U}(\mathbf{r})=\mathrm{U}_{0} /\left[\mathrm{r}^{2}+\mathrm{a}^{2}\right]^{1 / 2}$ introduced via Bakamjian-Thomas prescription

Two particles with a fully relativistic interaction in 1D

Shields, Morris, Ware, Su, Stefanovich, Grobe, Phys.Rev. A 82 (2010) 052116

Potential: $\mathbf{U}(\mathrm{r})=\mathrm{U}_{0} /\left[\mathrm{r}^{2}+\mathrm{a}^{2}\right]^{1 / 2}$
introduced via Bakamjian-Thomas prescription
rest frame

Two particles with a fully relativistic interaction in 1D

Shields, Morris, Ware, Su, Stefanovich, Grobe, Phys.Rev. A 82 (2010) 052116 Potential: $\mathbf{U}(\mathbf{r})=\mathbf{U}_{0} /\left[r^{2}+a^{2}\right]^{1 / 2}$ introduced via Bakamjian-Thomas prescription
rest frame
moving frame, Lorentz transformation

Two particles with a fully relativistic interaction in 1D

Shields, Morris, Ware, Su, Stefanovich, Grobe, Phys.Rev. A 82 (2010) 052116 Potential: $\mathbf{U}(r)=U_{0} /\left[r^{2}+a^{2}\right]^{1 / 2}$ introduced via Bakamjian-Thomas prescription
rest frame
moving frame, Wigner-Dirac theory
moving frame, Lorentz transformation

What about causality?

What about causality?

Principle of causality: the cause precedes the effect in all reference frames

What about causality?

Principle of causality: the cause precedes the effect in all reference frames

What about causality?

Principle of causality: the cause precedes the effect in all reference frames

What about causality?
Principle of causality: the cause precedes the effect in all reference frames
\square
ct
constant t
This argument is not valid fo....
Cause

A fully relativistic model of neutrino propagation and oscillation
Stefanovich 2012

A fully relativistic model of neutrino propagation and oscillation

Stefanovich 2012

For a general relativistic Hamiltonian in the Hilbert space of the $v_{\mu}-v_{\tau}$
system, the diagonal element $\Omega_{\mu}(p)$ is subject to only one condition:

$$
\begin{aligned}
E_{2}(p) & <\Omega_{\mu}(p)<E_{3}(p) \\
H & =\left[\begin{array}{ll}
\Omega_{\mu}(p) & f(p) \\
f^{*}(p) & \Omega_{\tau}(p)
\end{array}\right]
\end{aligned}
$$

A fully relativistic model of neutrino propagation and oscillation

Stefanovich 2012

For a general relativistic Hamiltonian in the Hilbert space of the $v_{\mu}-v_{\tau}$ system, the diagonal element $\Omega_{\mu}(p)$ is subject to only one condition:

$$
E_{2}(p)<\Omega_{\mu}(p)<E_{3}(p)
$$

$$
H=\left[\begin{array}{ll}
\Omega_{\mu}(p) & f(p) \\
f^{*}(p) & \Omega_{\tau}(p)
\end{array}\right]
$$

Trajectory of the μ-neutrino component

$$
L(t)=c t+\Delta L(E, t)
$$

$$
\Delta L(E, t)=\left(d \Omega_{\mu}(p) / d p-c\right) g(E, t)
$$

$\mathbf{g}(\mathbf{E}, \mathbf{t})$ is an oscillating function of \mathbf{t} assumption: $\mathrm{d} \Omega_{\mu}(\mathrm{p}) / \mathrm{dp}=1.0000237 \mathrm{c}$

A fully relativistic model of neutrino propagation and oscillation
Stefanovich 2012

For a general relativistic Hamiltonian in the Hilbert space of the $v_{\mu}-v_{\tau}$ system, the diagonal element $\Omega_{\mu}(p)$ is subject to only one condition:

$$
E_{2}(p)<\Omega_{\mu}(p)<E_{3}(p)
$$

$$
H=\left[\begin{array}{ll}
\Omega_{\mu}(p) & f(p) \\
f^{*}(p) & \Omega_{\tau}(p)
\end{array}\right]
$$

Trajectory of the μ-neutrino component

$$
\mathrm{L}(\mathrm{t})=\mathrm{ct}+\Delta \mathrm{L}(\mathrm{E}, \mathrm{t})
$$

$$
\Delta L(E, t)=\left(d \Omega_{\mu}(p) / d p-c\right) g(E, t)
$$

$\mathbf{g}(\mathbf{E}, \mathrm{t})$ is an oscillating function of \mathbf{t} assumption: $\mathrm{d} \Omega_{\mu}(\mathrm{p}) / \mathrm{dp}=1.0000237 \mathrm{c}$

Decay law of a moving unstable particle: a relativistic model
Stefanovich 1996, Khalfin 1997, Shirokov 2004

Decay law of a moving unstable particle: a relativistic model
Stefanovich 1996, Khalfin 1997, Shirokov 2004

at rest	$\omega(0, t) \approx \exp (-\Gamma t)$
in the moving frame (Einstein's theory)	$\omega(\theta, t) \approx \exp (-\Gamma t / \cosh \theta)=\exp (-\chi)$
in the moving frame (Wigner-Dirac theory)	$\omega(\theta, t) \approx \exp (-\chi)+\Delta(\chi, \theta)$

Decay law of a moving unstable particle: a relativistic model
Stefanovich 1996, Khalfin 1997, Shirokov 2004

at rest	$\omega(0, t) \approx \exp (-\Gamma t)$
in the moving frame (Einstein's theory)	$\omega(\theta, t) \approx \exp (-\Gamma t / \cosh \theta)=\exp (-\chi)$
in the moving frame (Wigner-Dirac theory)	$\omega(\theta, t) \approx \exp (-\chi)+\Delta(\chi, \theta)$

Properties of the imaginary unstable particle a:
mass $\mathrm{m}_{\mathrm{a}}=1000 \mathrm{MeV} / \mathrm{c}^{2}$
width $\Gamma=20 \mathrm{MeV} / \mathrm{c}^{2}$

Decay law of a moving unstable particle: a relativistic model

Stefanovich 1996, Khalfin 1997, Shirokov 2004

at rest	$\omega(0, t) \approx \exp (-\Gamma t)$
in the moving frame (Einstein's theory)	$\omega(\theta, t) \approx \exp (-\Gamma t / \cosh \theta)=\exp (-\chi)$
in the moving frame (Wigner-Dirac theory)	$\omega(\theta, t) \approx \exp (-\chi)+\Delta(\chi, \theta)$

Properties of the imaginary unstable particle a: mass $\mathrm{m}_{\mathrm{a}}=1000 \mathrm{MeV} / \mathrm{c}^{2}$
width $\Gamma=20 \mathrm{MeV} / \mathrm{c}^{2}$

Corrections to Einstein's time dilation formula

Decay law of a moving unstable particle: a relativistic model

Stefanovich 1996, Khalfin 1997, Shirokov 2004

at rest	$\omega(0, t) \approx \exp (-\Gamma t)$
in the moving frame (Einstein's theory)	$\omega(\theta, t) \approx \exp (-\Gamma t / \cosh \theta)=\exp (-\chi)$
in the moving frame (Wigner-Dirac theory)	$\omega(\theta, t) \approx \exp (-\chi)+\Delta(\chi, \theta)$

Properties of the imaginary unstable particle a: mass $\mathrm{m}_{\mathrm{a}}=1000 \mathrm{MeV} / \mathrm{c}^{2}$
width $\Gamma=20 \mathrm{MeV} / \mathrm{c}^{2}$

Corrections to Einstein's time dilation formula

The expected effect for muon $\left(\approx 10^{-18}\right)$ is too small to be observed. $: *$

CONCLUSIONS:

CONCLUSIONS:

1. In interacting systems one needs to take into account corrections to usual formulas of Einstein's special relativity.

CONCLUSIONS:

1. In interacting systems one needs to take into account corrections to usual formulas of Einstein's special relativity.
2. In all considered examples, these corrections are much smaller than the accuracy of modern experiments.

CONCLUSIONS:

1. In interacting systems one needs to take into account corrections to usual formulas of Einstein's special relativity.
2. In all considered examples, these corrections are much smaller than the accuracy of modern experiments.
3. See, however, arXiv:1211.2913!
