QCD inspired meson model and Swinger-Dyson equation for massless quark.

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov

BLTP JINR

The XXII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", Dubna, Russia, 17.09.2014

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Abstract

We present ideas that are usually not taken into account in QCD studies: importance of formulation in Minkowski-spacetime and effect of an operator product expansion by means of normal ordering of fields in lagrangian. We demonstrate a possible way from QCD lagrangian to effective action of strong interaction. Then we derive a Schwinger–Dyson equation for quark and study it both analytically and numerically. We consider a simplest possible model, but methods and ideas can be used in more general case.

Outline: Effective Action of Strong Interaction Solution of the massless Schwinger-Dyson equation Numerical solution

Analytical estimations

3

Effective Action of Strong Interaction

We start with $N_c = 3$, $N_f = 1$:

$$\mathcal{L}_{\rm QCD} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} - A^a_\mu j^{a\mu} + \overline{\psi} (i\gamma^\mu \partial_\mu - m)\psi$$

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu \qquad \qquad j^{a\mu} = -g \overline{\psi} \gamma^\mu \frac{\lambda^a}{2} \psi$$

We want to derive from this lagrangian an effective action for meson-like bound state¹, under some *restrictions* and *assumptions*:

▶ A first restriction is a choice of frame of reference. Below after some calculation we obtain a bound state which at whole will be at rest in this frame of reference. So only *static* problems considered.

Gauge: $\partial_k A^a_k(x) = 0$

¹There were a lot of attempts of making this: Arbuzov, Volkov; Efimov, Ivanov, Nedelko; etc. 🔊 🤇 🗠

After quantization the A^a_{μ} become an operator field. Vacuum 2-point correlator:

$$\langle 0|A_i^a(x)A_j^b(x)|0\rangle = 2C_g\delta_{ij}\delta^{ab}$$

▶ Suppose that $C_g \neq 0$ and $C_g < \infty$. In fact C_g should depend on energy, but we also suppose that C_g is constant.

Assuming $C_g \neq 0$, make normal ordering in lagrangian (standard approach is $C_q = 0$). The gluon term²:

$$-\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} = \frac{1}{2}\dot{A}^{a}_{i}\dot{A}^{a}_{i} - \frac{1}{4}F^{a}_{ij}F^{aij} + \frac{1}{2}A^{a}_{0}(-\Delta + M^{2}_{g})A^{a}_{0} + \dots$$

where: $M_g^2 \equiv 6g^2 C_g N_c$.

▶ Let us consider dotted terms as perturbation.

²That is consistent with phenomenology that at small energies gluon effectively have mass (Scadron, Politzer, Zakharov, etc.).

Generating functional:

$$\begin{split} \mathcal{Z} = & \int \! \mathsf{D} A^a_\mu \delta(\partial_k A^a_k) \mathsf{D} \overline{\psi} \mathsf{D} \psi \exp \! \left[i \int d^4 \! x \Bigl(\frac{1}{2} \dot{A}^a_i \dot{A}^a_i - \frac{1}{4} F^a_{ij} F^{aij} + \right. \\ & \left. + \frac{1}{2} A^a_0 (-\Delta + M^2_g) A^a_0 - A^a_0 j^a_0 + A^a_i j^a_i + \overline{\psi} (i \gamma^\mu \partial_\mu - m) \psi \Bigr) + \right. \\ & \left. + i \int d^4 \! x (A^a_i J^{ai} + \overline{\eta} \psi + \overline{\psi} \eta) \right] \end{split}$$

Make integration over A_0^a .

A Fierz-like transform of the color Gell-Mann matrices:

$$\frac{\lambda^{ar_1r_2}}{2}\frac{\lambda^{as_2s_1}}{2} = \frac{1}{3}\delta^{r_1s_1}\delta^{r_2s_2} + \frac{1}{6}\varepsilon^{tr_1s_2}\varepsilon^{ts_1r_2}$$

▶ As we want to consider only colorless mesons, we neglect the second term.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{aligned} \text{Rewrite using } \mathcal{K}: & -\frac{1}{2} \int d^4 x \, d^4 y \, j_0^a(x) \delta(x^0 - y^0) \frac{1}{4\pi} \frac{e^{-M_g |\mathbf{x} - \mathbf{y}|}}{|\mathbf{x} - \mathbf{y}|} \, j_0^a(y) = \\ &= -\frac{1}{2} \int d^4 x_1 \, d^4 x_2 \, d^3 \mathbf{y}_1 \, d^3 \mathbf{y}_2 \, \overline{\psi}_{\alpha_1}^{r_1}(x_1) \, \psi^{\alpha_2 r_2}(x_2) \delta^{r_1 s_1} \times \\ & \times \underbrace{\chi^{0^{\alpha_1}}_{\alpha_2} \, \delta^4(x_1 - x_2) \, \frac{g^2}{12\pi} \frac{e^{-M_g |\mathbf{x}_1 - \mathbf{y}_2|}}{|\mathbf{x}_1 - \mathbf{y}_2|} \, \delta^3(\mathbf{y}_1 - \mathbf{y}_2) \, \gamma^{0^{\beta_2}}{\beta_1}}_{\mathcal{K}^{\alpha_1}{\beta_1 \alpha_2}^{\beta_2}(x_1, \mathbf{y}_1; x_2, \mathbf{y}_2)} \\ & \times \delta^{r_2 s_2} \overline{\psi}_{\beta_2}^{s_2}(x_2^0, \mathbf{y}_2) \, \psi^{\beta_1 s_1}(x_1^0, \mathbf{y}_1) + \dots \end{aligned}$$

• Let's consider $\psi^{\alpha s}(x^0, \mathbf{x}) \overline{\psi}^s_{\beta}(x^0, \mathbf{y})$ as a real bilocal field.

The color index s is summing inside the pair $\psi\overline{\psi},$ so the pair $\psi\overline{\psi}$ as whole is colorless.

Introduce new bilocal field $\mathcal{M}^{\alpha}{}_{\beta}(x^0, \mathbf{x}, \mathbf{y})$ and make a bosonization (Habbard-Stratanovich) transform.

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov QCD inspired meson model and Swinger-Dyson equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finally:

$$\begin{split} \mathcal{Z} =& \int \! \mathsf{D}A_k^a \delta(\partial_k A_k^a) \mathsf{D}\overline{\psi} \mathsf{D}\psi \mathsf{D}\mathcal{M} \\ & \exp \! \left[i \int d^4 \! x \left(\frac{1}{2} \dot{A}_i^a \dot{A}_i^a - \frac{1}{4} F_{ij}^a F^{aij} + A_i^a j_i^a + \overline{\psi}(i\gamma^\mu \partial_\mu - m)\psi \right) + \right. \\ & \left. + \frac{i}{2} \int \! d^4 \! x_1 \, d^4 \! x_2 \, d^3 \! \mathbf{y}_1 \, d^3 \! \mathbf{y}_2 \, \mathcal{M}^{\mathrm{T}}_{\alpha_1}{}^{\beta_1}(x_1^0, \mathbf{x}_1, \mathbf{y}_1) \times \right. \\ & \left. \times \mathcal{K}^{-1\alpha_1}{}_{\beta_1\alpha_2}{}^{\beta_2}(x_1, \mathbf{y}_1; x_2, \mathbf{y}_2) \, \mathcal{M}^{\alpha_2}{}_{\beta_2}(x_2^0, \mathbf{x}_2, \mathbf{y}_2) + \right. \\ & \left. + i \int \! d^4 \! x \, d^3 \! \mathbf{y} \, \overline{\psi}_\alpha(x^0, \mathbf{x}) \, \psi^\beta(x^0, \mathbf{y}) \, \mathcal{M}^\alpha{}_\beta(x^0, \mathbf{x}, \mathbf{y}) + \right. \\ & \left. + i \int \! d^4 \! x \, d^3 \! \mathbf{y} \, \overline{\psi}_\alpha(x^0, \mathbf{x}) \, \psi^\beta(x^0, \mathbf{y}) \, \mathcal{M}^\alpha{}_\beta(x^0, \mathbf{x}, \mathbf{y}) + \right. \\ & \left. + i \int \! d^4 \! x \, (A_i^a \, J^{ai} + \overline{\eta} \psi + \overline{\psi} \eta) \right] \end{split}$$

(日) (四) (王) (王) (王)

For quantization of Bilocal Fields we use Stationary Phase method (semiclassical approximation).

After integrating over fermions:

$$\mathcal{Z} = \int \mathsf{D}A_k^a \delta(\partial_k A_k^a) \mathsf{D}\mathcal{M}e^{iS_{eff}}$$

Swinger-Dyson (Gap) equation – fermion spectrum³:

$$\frac{\delta S_{eff}}{\delta \mathcal{M}}(A_k^a = 0, \overline{\eta} = 0, \eta = 0, J = 0) = 0$$

Search the solution in the form

$$\mathcal{M}^{\alpha}{}_{\beta}(x^0,\mathbf{x},\mathbf{y}) \; = \; -\Sigma^{\alpha}{}_{\beta}(x^0,\mathbf{x},\mathbf{y}) \; + \; m\delta^{\alpha}{}_{\beta}\,\delta^3(\mathbf{x}\!-\!\mathbf{y})$$

 3 Bethe-Salpeter equation – bound state spectrum:

$$\frac{\delta^2 S_{eff}}{\delta \mathcal{M}^2} (\mathcal{M} = -\Sigma + m) \Gamma = 0$$

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov QCD inspired meson model and Swinger-Dyson equation

3

The Swinger-Dyson equation takes form:

$$\begin{split} \Sigma^{\alpha_1}{}_{\beta_1}(x_1^0, \mathbf{x}_1, \mathbf{y}_1) &= m \, \delta^{\alpha_1}{}_{\beta_1} \, \delta^3(\mathbf{x}_1 - \mathbf{y}_1) + \\ &+ 3i \! \int \! d^4 x_2 \, d^4 \! y_2 \, \mathcal{K}^{\alpha_1}{}_{\beta_1 \alpha_2}{}^{\beta_2}(x_1, \mathbf{y}_1; x_2, \mathbf{y}_2) \, G_{\Sigma}{}^{\alpha_2}{}_{\beta_2}(x_2, y_2) \, \delta(x_2^0 - y_2^0) \end{split}$$

where: $G_{\Sigma \ \beta}^{-1\alpha}(x,y) = i \gamma^{\mu \alpha}{}_{\beta} \partial_{\mu} \, \delta^4(x-y) - \Sigma^{\alpha}{}_{\beta}(x^0,\mathbf{x},\mathbf{y}) \, \delta(x^0-y^0)$

▶ Try next ansatz:

$$\Sigma^{\alpha}{}_{\beta}(x^{0}, \mathbf{x}, \mathbf{y}) = \delta^{\alpha}{}_{\beta} \frac{1}{(2\pi)^{\frac{3}{2}}} M(\mathbf{x} - \mathbf{y})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

After Fourier-transform:

$$\begin{split} M(\mathbf{p}) \, \delta^{\alpha_1}{}_{\beta_1} \; = \; m \, \delta^{\alpha_1}{}_{\beta_1} \; - \\ & - \, i \frac{g^2}{(2\pi)^4} \! \int \! d^4 q \; \frac{1}{(\mathbf{p} - \mathbf{q})^2 + M_g^2} \; \gamma^{0\alpha_1}{}_{\alpha_2} \, G_{\Sigma}{}^{\alpha_2}{}_{\beta_2}(q) \, \gamma^{0\beta_2}{}_{\beta_1} \end{split}$$

where:

$$\begin{split} G_{\Sigma}(q) &= e^{-\gamma^{i} \frac{q_{i}}{|\mathbf{q}|} \varphi(\mathbf{q})} \bigg(\frac{1}{q_{0} + E(\mathbf{q}) - i\varepsilon} \cdot \frac{1 + \gamma^{0}}{2} + \\ &+ \frac{1}{q_{0} - E(\mathbf{q}) + i\varepsilon} \cdot \frac{1 - \gamma^{0}}{2} \bigg) e^{\gamma^{i} \frac{q_{i}}{|\mathbf{q}|} \varphi(\mathbf{q})} \gamma^{0} \end{split}$$

$$E(\mathbf{q}) \equiv \sqrt{M(\mathbf{q})^2 + \mathbf{q}^2}$$
 $\cos 2\varphi(\mathbf{q}) \equiv \frac{M(\mathbf{q})}{E(\mathbf{q})}$

We can see that one can direct integrate over q_0 . After integrating over solid angles, finally:

$$M(p) = m + \frac{g^2}{(4\pi)^2} \frac{1}{p} \int_0^\infty dq \frac{qM(q)}{\sqrt{M^2(q) + q^2}} \ln\left(\frac{M_g^2 + (p+q)^2}{M_g^2 + (p-q)^2}\right)$$

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov

QCD inspired meson model and Swinger-Dyson equation

э

Solution of the massless Schwinger-Dyson equation

- $\blacktriangleright m = 0.$
- ▶ $M(q) \rightarrow 0$ at $q \rightarrow \infty$, (⇒ no renormalization is need).

Introduce dimensionless variables:

$$\bar{p} \equiv \frac{p}{M_g}$$
 $\bar{q} \equiv \frac{q}{M_g}$ $\bar{M}(\bar{p}) \equiv \frac{M(p)}{M_g}$

The Schwinger-Dyson equation takes form:

$$\bar{M}(\bar{p}) = \frac{g^2}{(4\pi)^2} \frac{1}{\bar{p}} \int_0^\infty d\bar{q} \frac{\bar{q}\bar{M}(\bar{q})}{\sqrt{\bar{M}^2(\bar{q}) + \bar{q}^2}} \ln\left(\frac{1 + (\bar{p} + \bar{q})^2}{1 + (\bar{p} - \bar{q})^2}\right)$$

There is always a solution: $\overline{M}(\overline{p}) = 0$

Put by definition $\bar{M}(-\bar{p}) = \bar{M}(\bar{p})$, than:

$$\bar{M}(\bar{p}) = \frac{g^2}{2(4\pi)^2} \frac{1}{\bar{p}} \int_{-\infty}^{+\infty} d\bar{q} \frac{\bar{q}\bar{M}(\bar{q})}{\sqrt{\bar{M}^2(\bar{q}) + \bar{q}^2}} \ln\left(\frac{1 + (\bar{p} + \bar{q})^2}{1 + (\bar{p} - \bar{q})^2}\right)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

Numerical solution Things that should be avoided:

- 1. Upper limit of integration must be $+\infty$, and can not be replaced by finite quantity Λ .
- 2. $\overline{M}(+\infty) = 0$, otherwise integral diverge.
- 3. It is better to avoid replacing continuous function $\overline{M}(\overline{p})$ by a discrete table $\overline{M}(\overline{p}_i)$ with fixed numbers of points \overline{p}_i .

Introduce:

$$W(\bar{q}) \equiv \frac{\bar{q}\bar{M}(\bar{q})}{\sqrt{\bar{M}^2(\bar{q}) + \bar{q}^2}}$$

Introduce new variables:
$$\bar{p} = \lambda \tan \frac{\varphi}{2}$$
, $\varphi \in (-\pi, \pi)$
 $\bar{q} = \lambda \tan \frac{\theta}{2}$, $\theta \in (-\pi, \pi)$

where λ - some parameter.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Schwinger-Dyson equation takes form:

$$\bar{M}(\varphi) = \frac{g^2}{2(4\pi)^2} \int_{-\pi}^{+\pi} \frac{d\theta}{2\tan\frac{\varphi}{2}\cos^2\frac{\theta}{2}} \ln\bigg(\frac{1+\lambda^2(\tan\frac{\varphi}{2}+\tan\frac{\theta}{2})^2}{1+\lambda^2(\tan\frac{\varphi}{2}-\tan\frac{\theta}{2})^2}\bigg) W(\theta)$$

On $[-\pi,\pi]$ there is convenient system of functions – Fourier series:

The equation:

$$a_k = A_{kj}b_j$$

where: $A_{kj} \equiv \frac{g^2}{32\pi^3} M_{kj}$, where:

$$M_{kj} \equiv \int_{-\pi}^{+\pi} d\varphi \int_{-\pi}^{+\pi} d\theta \frac{\cos(k\varphi)}{2\tan\frac{\varphi}{2}\cos^2\frac{\theta}{2}} \ln\left(1 + \frac{\lambda^2\sin\varphi\sin\theta}{(\cos\frac{\varphi}{2}\cos\frac{\theta}{2})^2 + (\lambda\sin\frac{\varphi-\theta}{2})^2}\right) \sin(j\theta)$$

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov

QCD inspired meson model and Swinger-Dyson equation

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov QCD inspired meson model and Swinger-Dyson equation

(日) (四) (王) (王) (王)

There is only $\overline{M}(\overline{p}) = 0$ solution at $g^2 < 16$.

Figure: Plot of $\overline{M}(\overline{p})$, at $g^2 = 18$, $\lambda = 10$, 13 harmonics.

Figure: Plot of $\overline{M}(\overline{p})$, at $g^2 = 19$, $\lambda = 10$, 13 harmonics.

(日) (四) (王) (王) (王)

э

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov QCD inspired meson model and Swinger-Dyson equation

Analytical estimations.

Try to find asymptotical behavior of $\overline{M}(\overline{p})$ at large \overline{p} .

The Schwinger-Dyson equation:

We try to solve approximate equation, where $\bar{M}_0 \equiv \bar{M}(0)$:

$$\bar{M}(\bar{p}) = -\frac{g^2}{(4\pi)^2} \frac{1}{\bar{p}} \int_{-\infty}^{+\infty} d\bar{q} \frac{\bar{q}\bar{M}(\bar{q})}{\sqrt{\bar{M}_0^2 + \bar{q}^2}} \ln\left(1 + (\bar{p} - \bar{q})^2\right)$$

・ロト ・四ト ・ヨト ・ヨト

э.

Introduce:
$$\mathcal{W}(\bar{q}) \equiv \frac{\bar{q}\bar{M}(\bar{q})}{\sqrt{\bar{M}_0^2 + \bar{q}^2}}$$

$$\sqrt{\bar{M}_0^2 + \bar{p}^2} \,\mathcal{W}(\bar{p}) = -\frac{g^2}{16\pi^2} \int_{-\infty}^{+\infty} d\bar{q} \,\ln\left(1 + (\bar{p} - \bar{q})^2\right) \mathcal{W}(\bar{q})$$

After Fourier transform:

$$\sqrt{\bar{M}_0^2 - \partial^2} \mathcal{W}(x) = \frac{g^2}{8\pi} \frac{e^{-|x|}}{|x|} \mathcal{W}(x)$$

Consider $\bar{p} \to \infty$ asymptotics.

$$\sqrt{\bar{M}_0^2 + \bar{p}^2} \longrightarrow |\bar{p}|$$

It corresponds $x \to 0$, so Taylor expansion can be used.

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov QCD inspired meson model and Swinger-Dyson equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の��

Try next ansatz:

$$\bar{M}(\bar{p}) = C \frac{1}{|\bar{p}|^{\beta}}$$

The SD equation is self-consistent if:

$$\frac{1}{g^2} = \frac{1}{8\pi} \frac{\cot\left(\frac{\pi\beta}{2}\right)}{(1-\beta)}$$

Hence: $g^2 \leq 16$ $0 < \beta < 2$

イロト イヨト イヨト イヨト

æ

Let us subtract from equation the asymptotic:

$$\bar{M}(\bar{p}) - C\frac{1}{\bar{p}^{\beta}} = \frac{g^2}{(4\pi)^2} \frac{1}{\bar{p}} \int_0^{\infty} d\bar{q} \frac{\bar{q}\bar{M}(\bar{q})}{\sqrt{\bar{M}^2(\bar{q}) + \bar{q}^2}} \ln\left(\frac{1 + (\bar{p} + \bar{q})^2}{1 + (\bar{p} - \bar{q})^2}\right) - C \int_0^{\infty} d\bar{q} \frac{\beta}{(\bar{p} + \bar{q})^{\beta}}$$

After integration over \bar{p} and substitution $g^2 < 16$:

$$\int\limits_{0}^{\infty} d\bar{p} \Big(\bar{M}(\bar{p}) - C\frac{1}{\bar{p}^{\beta}}\Big) \ < \ \int\limits_{0}^{\infty} d\bar{q} \Big(\frac{\bar{q}\bar{M}(\bar{q})}{\sqrt{\bar{M}^2(\bar{q}) + \bar{q}^2}} - C\frac{1}{\bar{q}^{\beta}}\Big)$$

what is a impossible.

Therefore there is no asymptotic with $0 < \beta < 1$.

Analogously one can prove that asymptotic with $0 < \beta < 1$ also is not exist.

The nontrivial solution exist only at $g^2 = 16.4$ At $\bar{p} \to \infty$:

$$\bar{M}(\bar{p}) \sim \frac{1}{\bar{p}}$$

$${}^4\alpha_s = \frac{g^2}{4\pi} = \frac{4}{\pi}$$

V. Shilin, A. Cherny, V. Pervushin, A. Dorokhov

QCD inspired meson model and Swinger-Dyson equation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Conclusions

- 1. The simple model of strong interaction with massive gluon was constructed.
- 2. In framework of this model we studied the Swinger-Dyson equation for quark analytically and numerically and got that nontrivial solution appear only at $g^2 = 16$ with asymptotic $\overline{M}(\overline{p}) \sim \frac{1}{\overline{p}}$.
- 3. The created programs for numerical calculation of the Swinger-Dyson equation can be used not only in our case but for various kernels.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@