XXII INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS Dubna, September 15-20, 2014

Identifying Large Extra Dimensions in dilepton production at the Large Hadron Collider

I.A. Serenkova, A.A. Pankov A.V. Tsytrinov, The Abdus Salam ICTP Affiliated Centre, Technical University of Gomel, Belarus

Introduction

It is generally expected that New Physics (NP) will manifest itself at colliders such as the LHC and the ILC (International e^+e^- Linear Collider).

The NP effects will be observed either **directly**, as in the case of new particle production, e.g., **Z'** and vector **W'** bosons, SUSY or Kaluza-Klein (KK) resonances, or **indirectly** through deviations of observables (cross sections and asymmetries) from SM predictions. In the case of **indirect** discovery many different NP Scenarios may lead to the **same** or **very similar** experimental signatures.

There are many different NP scenarios predicting new particle exchanges which can lead to Contact Interaction (**CI**) below direct production threshold.

Here we **develop a technique** based on the center-edge asymmetry which offers a way to identify tensor (graviton) exchange both in ADD scenario in $pp \rightarrow l^+ l^- + X$ at the LHC.

<u>A fifth dimension? Some History:</u>

Finnish physicist Nordstrom showed in 1914 that gravity and electromagnetism could be unified in a single theory with 5 dimensions

Gunnar Nordstrom 1881–1923

 However, this theory incorporated Nordstrom's theory of gravity – in competition with Einstein's at the time – and was largely ignored

Theodor Kaluza 1885–1954

A fifth dimension?

Polish mathematician Kaluza showed in 1919 that gravity and electromagnetism could be unified in a single theory with 5 dimensions – using Einstein's theory of gravity

"The idea of achieving a unified theory by means of five-dimensional world would never have dawned on me...At first glance I like your idea tremendously"

The fifth dimension

Oskar Klein 1894-1977 Swedish physicist Klein proposed in 1926 that the fifth dimension was real, but too tiny to be observed

Computed it had a size of

to unify gravity with electromagnetism

"Klein's paper is beautiful and impressive"

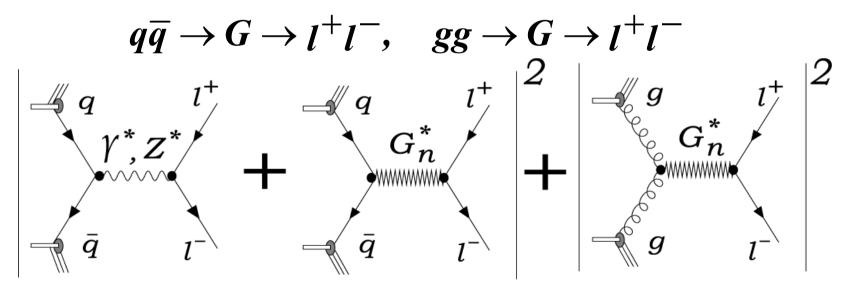
 Virtual exchange of the graviton KK excitation states is governed by the effective Lagrangian (similar to dim-8 CI):

$$L^{ADD} = i \frac{4\lambda}{M_H^4} T^{\mu\nu} T_{\mu\nu}$$

where M_H is the cut-off scale (convention of *Hewett*), $\lambda = \pm 1$.

• Introduce UV cut-off when summing over KK states:

$$\mathcal{M} \sim \sum_{\vec{n}=1}^{\infty} \frac{G_{\mathsf{N}}}{M^2 - m_{\vec{n}}^2} \to \frac{2}{d-2} \cdot \frac{1}{M_H^4(\mathrm{HLZ})},$$


A different approach was given in ADD model which proposes the size of the extra dimensions could be roughly at millimeter and at the TeV scale that leads to

possible observation at the LHC

$$pp \to l^+ l^- + X$$

SM:
$$q\overline{q}
ightarrow \gamma, Z
ightarrow l^+ l^-$$

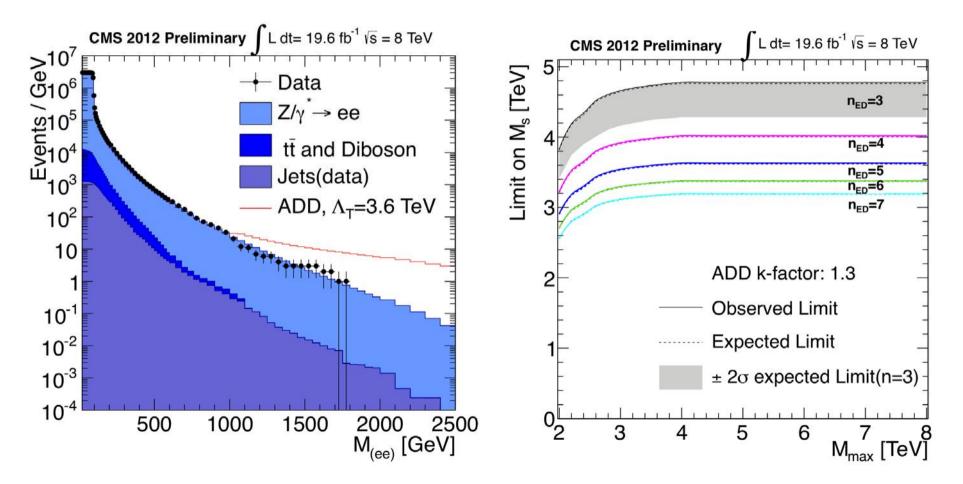
Graviton exchange signatures in ADD scenario:

Feynman diagrams for dilepton production at leading order in the ADD model

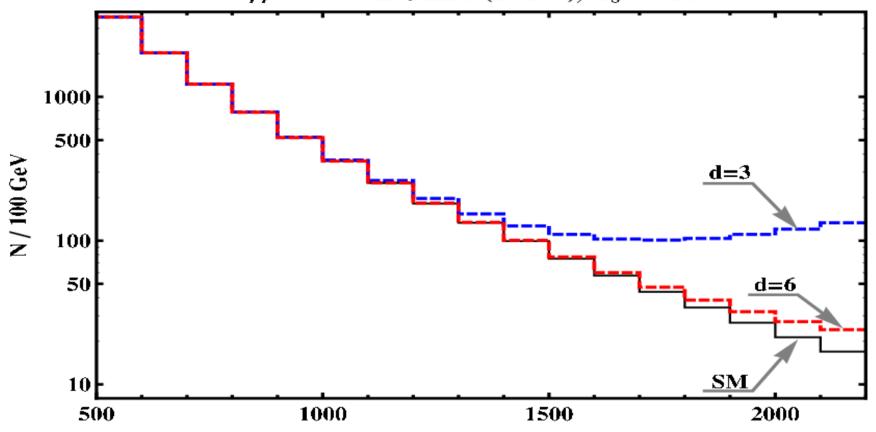
ATLAS search summary

ATLAS Exotics Searches* - 95% CL Exclusion

Status: ICHEP 2014

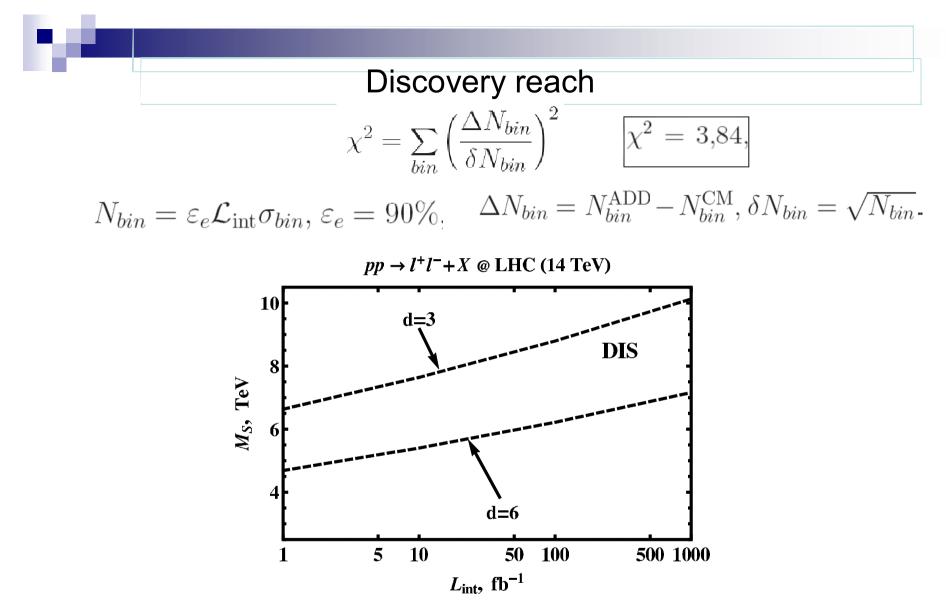

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$


Model	ℓ, γ Jets	s E ^{miss}	້∫£dt[fb			Reference
$\begin{array}{c} \text{ADD } G_{KK} + g/q\\ \text{ADD non-resonant }\ell\ell\\ \text{ADD QBH} \to \ell q\\ \text{ADD QBH} \\ \text{ADD QBH}\\ \text{ADD D BH high }\Sigma p_T\\ \text{RS1 } G_{KK} \to \ell\ell\\ \text{RS1 } G_{KK} \to WW \to \ell \nu\ell\nu\\ \text{Bulk } \text{RS } G_{KK} \to WW \to \ell \nu\ell\nu\\ \text{Bulk } \text{RS } G_{KK} \to HH \to b\bar{b}b\bar{b}\\ \text{Bulk } \text{RS } g_{KK} \to t\bar{t}\\ S^1/Z_2 \text{ ED}\\ \text{UED}\\ \end{array}$	$\begin{array}{cccc} - & 1-2 \\ 2e, \mu & - \\ 1 & e, \mu & 1j \\ - & 2j \\ 2\mu(SS) & - \\ > 1 & e, \mu & \ge 2 \\ 2 & e, \mu & - \\ 2 & e, \mu & - \\ 2 & e, \mu & 2j/1 \\ - & 4 & b \\ 1 & e, \mu & \ge 1 & b, \ge \\ 2 & e, \mu & - \\ 2 & e, \mu & - \\ 2 & \gamma & - \end{array}$		4.7 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 19.5 14.3 5.0 4.8	Mp 4.37 TeV Ms 5.2 TeV Min 5.7 TeV Min 5.7 TeV Min 5.7 TeV Min 5.7 TeV GKK mass 2.68 TeV GKK mass 730 GeV GKK mass 590-710 GeV BKK mass 590-710 GeV GKK mass 2.0 TeV MKK ≈ R ⁻¹ 4.71 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ} \\ n &= 6 \\ n &= 6 \\ n &= 6, \ M_D &= 1.5 \text{ TeV, non-rot BH} \\ n &= 6, \ M_D &= 1.5 \text{ TeV, non-rot BH} \\ \overline{k/\overline{M}_{Pl}} &= 0.1 \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 1.0 \\ BR &= 0.925 \end{split}$	1210.4491 ATLAS-CONF-2014-03 1311.2006 to be submitted to PRI 1308.4075 1405.4254 1405.4254 1405.4123 1208.2880 ATLAS-CONF-2014-03 ATLAS-CONF-2014-03 ATLAS-CONF-2013-05 1209.2535 ATLAS-CONF-2012-07
$\begin{array}{c} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } W' \to \ell\nu \\ \text{EGM } W' \to WZ \to \ell\nu \ell'\ell' \\ \text{EGM } W' \to WZ \to qq\ell\ell \\ \text{LRSM } W'_R \to t\overline{b} \\ \text{LRSM } W'_R \to t\overline{b} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1j Yes 1J —	20.3 19.5 20.3 20.3 20.3 14.3 20.3	Z' mass 2.9 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.84 TeV W' mass 1.77 TeV		1405.4123 ATLAS-CONF-2013-06 ATLAS-CONF-2014-01 1406.4456 ATLAS-CONF-2014-03 ATLAS-CONF-2013-05 to be submitted to EPJ
Cl qqqq Cl qqℓℓ Cl uutt	$ \begin{array}{ccc} - & 2 j \\ 2 e, \mu & - \\ 2 e, \mu (SS) \geq 1 b, z \end{array} $	– – ≥1jYes	4.8 20.3 14.3	Λ 7.6 TeV Λ Λ 3.3 TeV	$\eta = +1$ 21.6 TeV $\eta_{LL} = -1$ $ C = 1$	1210.1718 ATLAS-CONF-2014-03 ATLAS-CONF-2013-05
EFT D5 operator (Dirac) EFT D9 operator (Dirac)	$\begin{array}{ccc} 0 \ e, \mu & 1-2 \\ 0 \ e, \mu & 1 \ J, \leq \end{array}$	-	10.5 20.3	M. 731 GeV 2.4 TeV	at 90% CL for $m(\chi) < 80$ GeV at 90% CL for $m(\chi) < 100$ GeV	ATLAS-CONF-2012-14 1309.4017
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	$\begin{array}{ccc} 2 \ e & \geq 2 \\ 2 \ \mu & \geq 2 \\ 1 \ e, \mu, 1 \ \tau & 1 \ b, \end{array}$	j –	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \end{array}$	1112.4828 1203.3172 1303.0526
Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	≥3jYes Ib – Ib –	14.3 14.3 20.3 20.3 14.3	T mass 790 GeV T mass 670 GeV T mass 735 GeV B mass 755 GeV B mass 720 GeV	T in (T,B) doublet isospin singlet T in (T,B) doublet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-01 ATLAS-CONF-2013-06 ATLAS-CONF-2014-03 ATLAS-CONF-2014-03 ATLAS-CONF-2013-05
Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1γ 1 j - 2 j 1 or 2 e, μ 1 b, 2 j 2 e, μ , 1 γ -	– – pr1jYes –	20.3 20.3 4.7 13.0	q* mass 3.5 TeV q* mass 4.09 TeV b* mass 870 GeV (* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2$ TeV	1309.3230 to be submitted to PR 1301.1583 1308.1364
LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Yes _ _ _ _	20.3 2.1 5.8 4.7 4.4 2.0	ar mass 960 GeV № mass 1.5 TeV № mass 245 GeV H ^{±±} mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV	$m(W_R) = 2$ TeV, no mixing $ V_e =0.055, V_{\mu} =0.063, V_{\tau} =0$ DY production, BR($H^{\pm\pm} \rightarrow \ell \ell$)=1 DY production, $ q = 4e$ DY production, $ q = 1_{RD}$	to be submitted to PL 1203.5420 ATLAS-CONF-2013-0 1210.5070 1301.5272 1207.6411

*Only a selection of the available mass limits on new states or phenomena is shown.

Limits on the ADD model


To estimate the discovery reach of graviton towers in the ADD model one can use the invariant mass distributions of lepton pairs that have significantly different behavior in the SM and the ADD model

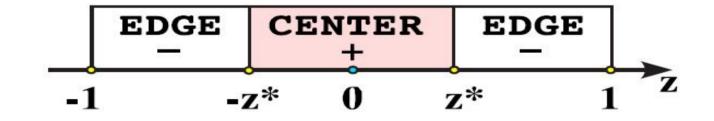
 $pp \rightarrow l^+l^- + X @ LHC (14 \text{ TeV}), M_S = 6 \text{ TeV}$

 $M_{\rm ll}$, GeV

Effects of extra dimensions on the dilepton mass spectrum at the LHC. Histograms shows the spectrum in the SM model as well as in the ADD scenario with cutoff Ms=6 TeV and different number of extra dimensions (d=3,6) at the LHC.

The results of the analysis are demonstrated in Fig. 2 In particular, Fig. 2 shows discovery reach on cutoff scale Ms at 95 % C.L. for d=3 and d=6 as a function of integrated luminosity at the LHC

Various New Physics possibilities


- Composite models
- Heavy Z' exchanges
- Scalar and vector leptoquarks
- Sneutrino exchange
- Anomalous Gauge Couplings (AGC)
- Exchange of gauge boson KK towers
- Virtual KK graviton exchange (ADD)
- etc.

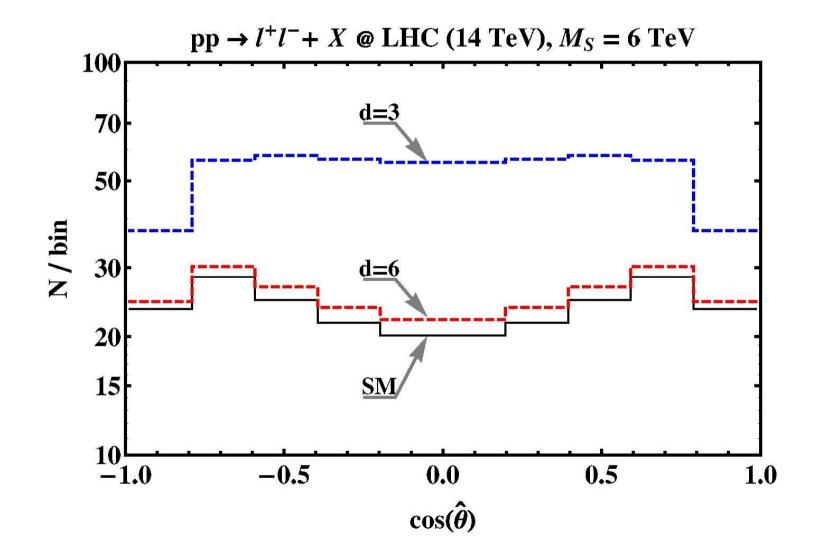
Of course, there may be many other sources of CI from NP models as yet undiscovered, as was the low-scale gravity scenario only several years ago.

Centre-Edge Asymmetry A_{CE} (parton level)

$$A_{CE} = \frac{\hat{\sigma}_{CE}}{\hat{\sigma}},$$

$$\hat{\sigma}_{CE} = \left[\int_{-z^*}^{z^*} - \left(\int_{-1}^{-z^*} + \int_{z^*}^{1}\right)\right] \frac{d\hat{\sigma}}{dz} dz,$$

$$z \equiv z_{CM} = \cos \theta_{CM}; \ \theta_{CM} = \angle (q, e^{-})$$


ACE in CI and Ext. Dim. scenarios

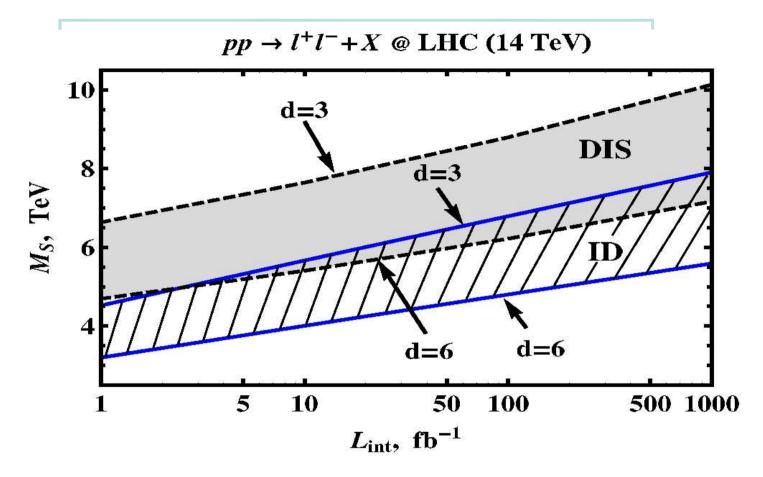
$$\begin{split} \boxed{\frac{\mathrm{d}\sigma_{q\bar{q}}^{\mathrm{CM}}}{\mathrm{d}z} = \frac{3}{8}(1+z^2) \cdot \sigma_{q\bar{q}}^{\mathrm{CM}}}_{q\bar{q}} \quad & \mathsf{NP=CI} \quad \boxed{\frac{\mathrm{d}\sigma_{q\bar{q}}^{\mathrm{NP}}}{\mathrm{d}z} = \frac{3}{8}(1+z^2) \cdot \sigma_{q\bar{q}}^{\mathrm{NP}}}_{q\bar{q}}}_{A_{\mathrm{CE}}^{\mathrm{CM}} = \frac{\sigma_{q\bar{q}}^{\mathrm{CM}}[\frac{1}{2}z^*(z^{*2}+3)-1]}{\sigma_{q\bar{q}}^{\mathrm{CM}}} = \frac{1}{2}z^*(z^{*2}+3)-1} \quad \boxed{A_{\mathrm{CE}}^{\mathrm{NP}} = \frac{\sigma_{q\bar{q}}^{\mathrm{NP}}[\frac{1}{2}z^*(z^{*2}+3)-1]}{\sigma_{q\bar{q}}^{\mathrm{NP}}} = \frac{1}{2}z^*(z^{*2}+3)-1}}_{A_{\mathrm{CE}}^{\mathrm{CM}} = A_{\mathrm{CE}}^{\mathrm{NP}} = \frac{1}{2}z^*(z^{*2}+3)-1}$$


$$\frac{\mathrm{d}\sigma^{\mathrm{ADD}}}{\mathrm{d}z} = \frac{3}{8}(1+z^2)\sigma^{\mathrm{CM}}_{q\bar{q}} + \frac{5}{8}(1-3z^2+4z^4)\sigma^G_{q\bar{q}} + \frac{5}{8}(1-z^4)\sigma^G_{gg} + \frac{1}{4}(1-3z^2)\sigma^G_{q\bar{q}} + \frac{1}{4}(1-$$

$$A_{\rm CE}^{\rm ADD} = \frac{\sigma_{\rm CE}^{\rm ADD}}{\sigma^{\rm ADD}}. \qquad ADD: A_{CE}^{ADD} \neq A_{CE}^{NP}$$

Angular distributions

Center-edge asymmetry ACE



CI:

$$\Delta A_{CE} = A_{CE}^{CI} - A_{CE}^{SM} = \mathbf{0}$$
ADD:

$$\Delta A_{CE} = A_{CE}^{ADD} - A_{CE}^{SM} \neq \mathbf{0}$$

Identification reach

Discovery (gray band) and identification (hatched) reaches on Ms (in TeV) at 95% as a function of integrated luminosity for different number of extra dimensions (d=3-6) at the LHC with 14 TeV

Conclusions

- By considering the present and future LHC energy regimes, we reanalyse the potential of the LHC to discover the effects of large extra dimensions and to discriminate between various theoretical models.
- Specifically, in latter case we explore the capability of the LHC to distinguish spin-2 Kaluza-Klein towers of gravitons exchange from other new physics effects which might be conveniently parametrized by the four-fermion contact interactions. Centre-edge asymmetry provides unique graviton exchange signature in lepton pair production at the LHC energies
- We find that the LHC with planned energy 14 TeV and luminosity 100 fb-1 will be capable of discovering (and identifying) graviton exchange effects in the large extra dimensions with the cutoff parameter of order *Ms* = 6.2 TeV (4.8 TeV) for *d* = 6 and *Ms* = 8.8 TeV (6.8 TeV) for *d* = 3.

Thanks for your attention!