First indication of the triangular $\left(\mathrm{v}_{\mathbf{3}}\right)$ and

 quadrangular $\left(\mathrm{v}_{\mathbf{4}}\right)$ flow of light hydrogen isotopes in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{\mathrm{S}}_{\mathrm{NN}}=2.4 \mathrm{GeV}$Alexander Sadovsky
for the HADES collaboraton
sadovsky@inr.ru
Institute for Nuclear Research RAS
(Moscow)

1) Pictorial introduction
2) Reaction plane reconstruction in some experim. 3) HADES and its capability for azimuthal flows
3) Extraction and correction of flow parameters
4) Concluding remarks

Physical information from azimuthal flows

Azimuthal flows give us a chance to interpret
A-A collisions in 3-dimensions

Barometer for EOS at low and intermediate energies

Access to viscosity of the medium involved

Hydrodynamics predict $\mathrm{v}_{1}, \mathrm{v}_{2}$ collapse at intermediate energy range of $A-A$ (supported by NA49 results at 40AGeV)

Introduction

Definition of reaction plane, secondaries and spectators

Introduction

Reaction plane as a reference for azimuthal distributions

Introduction

Distributions of azimuthal flow

Typical experiments: FOPI @ GSI

Figures from: A. Devismes, Results from FOPI on strangeness production and propagation, SQM-2001 www-fopi.gsi.de/pub/conf/

Detailed flow studies for $\pi, p, d, t,{ }^{3} H,{ }^{3} \mathrm{He}, \alpha$ with $A u+A u$ in energy region of $\{0.09,0.12,0.25,0.4,0.6,0.8,1.0,1.2,1.5)$ AGeV

KaoS: azimuthal flow analysis based on reaction plane obtained with help of spectator distribution

Y.Shin et.al. PRL81, 1998.

Excellent single track PID

HADES @ SIS-18, GSI, Darmstadt

Systematic measurements of di-electron and strangeness in $A A, N N, p A, \pi N$ and πA collisions:

Excitation function for low-mass lepton pairs and (multi-)strange baryons and mesons
Various aspects of baryon-resonance physics

* Fixed target experiment, large acceptance
* Full azimuthal coverage
* Hadron and lepton identification
* e+e- pair acceptance 35\%, inv.mass
resolution 2% (ρ / ω region)
* Event plane reconstruction
* Electronics ~ 80.000 channels
* DAQ: now up to 50 kHz event rate

HADES: Forward Wall technique

\rightarrow beam position monitoring
\rightarrow determination of event plane
\rightarrow flow analysis

Forward wall: 288 cells

140 small $4 \times 4 \mathrm{~cm} \quad\left(0^{\circ}<\theta<2^{0}\right)$
64 middle $8 \times 8 \mathrm{~cm} \quad\left(2^{\circ}<\theta<3.3^{\circ}\right)$
84 large $16 \times 16 \mathrm{~cm}\left(3.3^{\circ}<\theta<7.2^{\circ}\right)$

Reconstruction of reaction plane

(illustration: modified transverse momentum method)

Event plane flattening (1) Re-centering to get expected angular isotropy

Cell occupancy (for spectators)

Acceptable level of remaining anisotropy

Event plane flattening (2) Re-weighting to cancel remaining anisotropy

Small remaining anisotropy can be eliminated by re-weighting event plane angles to get flat the resulting distribution:

$$
\frac{d N}{d \varphi_{E P}} \sim 1+c_{1} \cos \left(\varphi_{E P}\right)+c_{2} \cos \left(2 \varphi_{E P}\right)+c_{3} \sin \left(\varphi_{E P}\right)
$$

ral centrality bins independently

Event plane flattening (2) Re-weighting to cancel remaining anisotropy

Small remaining anisotropy can be eliminated by re-weighting event plane angles to get flat the resulting distribution:

$$
\frac{d N}{d \varphi_{E P}} \sim 1+c_{1} \cos \left(\varphi_{E P}\right)+c_{2} \cos \left(2 \varphi_{E P}\right)+c_{3} \sin \left(\varphi_{E P}\right)
$$

Applied for several centrality bins independently
\rightarrow (following procedure as in KaoS, see e.g. Ph.D. A.Förster, Ph.D. M.Ploskon)

After re-weighting the event plane angle distribution with the obtained function of 3 parameters $\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3$.

Flow parameters

An estimate of v_{1} and v_{2} flow parameters can be done with correction (Ollitrault method) by reaction plane resolution due to limited angular resolution of the detector.

$$
\begin{aligned}
& \frac{d N}{d\left(\varphi_{\pi}-\varphi_{E P}\right)} \sim 1+2 v_{1}^{(\text {fit })} \cos \left(\varphi_{\pi}-\varphi_{E P}\right)+2 v_{2}^{(f i t)} \cos \left(2\left(\varphi_{\pi}-\varphi_{E P}\right)\right)+\ldots \\
& v_{1}=\frac{v_{1}^{(f i t)}}{\langle\cos (\Delta \phi)\rangle} \\
& v_{2}=\frac{\Delta \phi=\phi_{E P}-\phi_{R P}=\phi_{\text {measured }}-\phi_{\text {true }}}{\langle\cos (2 \Delta \phi)\rangle}
\end{aligned}
$$

$$
\frac{N\left(90^{\circ}<\left|\Delta \phi_{A B}\right|<180^{\circ}\right)}{N\left(0^{\circ}<\left|\Delta \phi_{A B}\right|<180^{\circ}\right)}=\frac{e^{-x^{2} / 2}}{2}
$$

Proton acceptance vs. y_{0} and p_{t}

Selection for protons : \& good tracks selected \& dE/dx in gaseous tracking chambers \& appropriate reconstructed mass \& similar to FOPI p_{t}-acceptance $\left(u_{t 0}>0.4\right)$

Azimuthal flow extracted for a set of y_{0} with efficiency correction

Following FOPI acceptance
selection: $u_{\mathbf{t} 0}$ vS y_{0}
W.Reisdorf et al. NPA876 (2012)

' \mathbf{p} ' - denotes incident projectile
particle in c.o.m. system

Protons flow Au+Au @ $1.23 \mathrm{GeV} / \mathrm{u}$ HADES (preliminary) vs. FOPI

Enp ty symbols - FOpl AU-HA @ 1.2 and $1.5 \mathrm{GeV} / \mathrm{U}$ (W, Reisdorf et al, Nucl, Phys, A 876 (2012) : arXive1112.3180v1) Jnterpolated to Elin=1,23 GeV/u to conpare with flades

Filled symbols - HADES AutAu Ekin=1. $23 \mathrm{GeV} / \mathrm{u}$ (preliminary)* * results obtained with help of GSI infrastructure

Protons: preliminary results azimuthal flow vs. y_{0}

Good agreement for v_{1} and v_{2} with FOPI data in same energy range interpolated to Ekin $=1.23 \mathrm{GeV} / \mathrm{u}$

However available statistics allows HADES to reconstruct higher Fourier harmonics v_{3} and v_{4}
(Errors - stat. only.)

Rapidity distributions (integrated p_{t}) demonstrate odd v_{3} and even v_{4} harmonics

- i.e. reasonable from considerations of symmetry

Comparing deuteron and triton in HADES with FOPI

Selection for $\mathbf{d , t}$:
\& good tracks selected
\& $\mathrm{dE} / \mathrm{dx}$ in gaseous tracking chambers \& appropriate reconstructed mass \& similar to FOPI p_{t}-acceptance ($\left.u_{t 0}>0.4\right)$

Yet no detailed efficiency correction (actually rather flat response)

Secondaries PID based on tracking, TOF/RPC and dE/dx in MDC

Deuteron and triton in comparison with FOPI

FOPI $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ data Ekin $=1.2 \mathrm{AGeV}, p_{\mathrm{t}}>0.4$ W.Reisdorf et al. NPA876 (2012)

Symbols on plots
\square deuteron (FOPI)

- deuteron (HADES)
Δ triton (FOPI)

- triton (HADES) * alpha (FOPI)

HADES (all 31 days): Centrality selection $0.25<b_{0}<0.45$

Systematics:
partially included

Azimuthal flow data $1 \mathrm{GeV}-3 \mathrm{TeV}$

- Access to EOS at Ekin=1-2 GeV/u energies \rightarrow soft EOS (KaoS, FOPI, HADES) Ongoing K^{+}-flow analysis, plans for \wedge
- Reasonable agreement of v_{2} with some of

HADES point preliminary added on top of an existing hydrodynamical models > at high energies

- Hope to contribute in studies of higher harmonic v_{3} and v_{4} starting from $\sqrt{5}_{\text {NN }}=2.4 \mathrm{GeV}$
- Recently: "transport"+"hydro" hybrid model made predictions for v_{2} and v_{3} in range of $\sqrt{s}_{\text {NN }}=5 \ldots . .200 \mathrm{GeV} / \mathrm{u}$

See: J.Auvinen and H.Petersen Phys. Rev. C 88, 064908(2013)

- Predictions for even lower
compilation by: K. Aamodt et al., Phys. Rev. Lett. 105, 252302 (2010)

Concluding remarks

- Obtained preliminary azimuthal flow results from Au+Au collisions at beam kinetic energy of 1.23A GeV performed in 2012 by using High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI Darmstadt
- Accumulated High statistics data allow measuring flow components with respect to event plane. The event plane has been reconstructed with help of a projectile fragments detector
- Well known Fourier coefficients of direct (v1) and elliptic (v2) flows are in agreement with previously measured ones by FOPI collaboration
- Our preliminary analysis indicates a possibility to extract higher: triangular (v3) and quadrangular (v4) flow harmonics for proton deuteron and tritium, which were not seen yet at SIS-18 energy range $\sqrt{\mathrm{s}}_{\text {NN }} \sim 2 \mathrm{GeV} / \mathrm{u}$
- This measurement may offer additional constraints for the equation of state of the nuclear matter at high densities. Ongoing analysis to extract flow of strangeness.

Thank you for your attention

The HADES Collaboration: 156 members, composed of 19 institutions from 10 European countries, (See: hades.gsi.de)

Backup slides

Prot. $\left\{\mathrm{v}_{1}: \mathrm{u}_{\mathrm{t} 0}\right\}$ preliminary HADES vs. FOPI

HADES preliminary
Note: HADES only for protons, but in 3 centrality classes compared with FOPI data $\{p, d, t\}$ for single centrality class. Green one corresponds to FOPI

Prot. $\left\{\mathrm{v}_{2}: \mathrm{u}_{\mathrm{t} 0}\right\}$ preliminary HADES vs. FOPI

HADES preliminary
Protons, in 3 centrality classes.
Green and red nicely agree with FOPI, blue - underestimated by $\sim<15 \%$

$\left\{v_{2}: u_{t 0}\right\}$ results from FOPI

New predictions for v_{2} and v_{3} with hybrid model (transport at the beginning of collision, hydrodynamics for hot and dense phase for flow production, and transport in the end)

a) Integrated v_{3} at midrapidity $|y|<1.0$ in central $(b=0-3.4 \mathrm{fm})$ and midcentral
$(b=6.7-8.2 \mathrm{fm})$ collisions for collision energies $\left.\sqrt{s_{N N}}=5-62.4 \mathrm{GeV} . \mathrm{b}\right) v_{3}\left(p_{T}\right)$
in midcentral collisions for $\sqrt{s_{N N}}=5-39 \mathrm{GeV}$.
See: J. Auvinen, H. Petersen, arXiv:1310.7751v1, Phys.Rev.C88, 064908 (2013)

Collective flows and phase transition

Excitation function of average directed flow for baryons at different $E_{\text {lab }}$

Central Au + Au collisions calculated with:

2F-MPM: two-fluid hydrodynamics with the EoS from the Mixed-Phase model,

1F no PT: one-fluid with phase transition 1F with PT: one-fluid w/o phase transition

Central Au + Au collisions calculated with:

2F-MPM: two-fluid hydrodynamics with the EoS from the Mixed-Phase model,

3F (nonunity) with PT, 3F (unity) with PT:

three-fluid hydro with bag model EoS and with phase transition

See: [Y.B. Ivanov, E.G. Nikonov, W. Nörenberg, A.A. Shanenko, V.D. Toneev, Heavy Ion Phys. 15, 117 (2002) 752]

Prediction: v_{2} flows at Au+Au@25AGeV ${ }^{\text {A5 }}$

Collective flow \leftrightarrow space-time evolution of fireball
Elliptic flow v_{2} and its dependence on the p_{t} of particle sheds light on the degrees of freedom which prevail in the early stage of the collision.

Predictions from several transport model calculations for hadron $v_{2}{ }^{-} 0.15$ flow at midrapidity for mid-central b~7 fm (Au@25AGeV)+Au collisions

Flow analysis and azimuthal angular distributions ${ }^{[46]}$

Azimuthal angular distribution of K^{+}for peripheral, semi-central and central events in collisions of (Au@1AGeV)+Au by KaoS collaboration. PRL.81(1998)1576-1579

In the frames of Fourier decomposition of obtained azimuthal distributions:

$$
\frac{d N}{d \varphi}=C\left(1+2 a_{1} \cos (\varphi)+2 a_{2} \cos (2 \varphi)+\ldots\right)
$$

which allows determination of directed $\left(a_{1}\right)$ and elliptic $\left(a_{2}\right)$ flows one may draw conclusions about the in-plane and outof plane emission, in-medium potential...

Spectator selection with HADES FW

hWallititIME for all cells

Time-of-flight needed by spectators to travel from target to FW cell is selected

WallHit Time (cell35)

All charges accepted, but noise and magic peak are taken away individually

WallHit Charge (cell35)

Estimating RP-angular resolution of FW

Simulation: dN/dM(TOF+RPC) SHIELD AuAu@1.25AGeV, hGeant, DST

Data: $\mathrm{dN} / \mathrm{dM}($ TOF + RPC) (DST-qen-0, M5 triqqer)

Estimating RP-angular resolution of FW (with $\mathrm{A}^{\wedge} \mathrm{B}$ subevent method)

$\operatorname{RMS}\left(\mathrm{A}^{\wedge} \mathrm{B}\right)=\{1,2,3,4,5\}=\left\{91.1^{\mathrm{O}}, 80.9^{\mathrm{O}}, 68.7^{\mathrm{O}}, 86.4^{\mathrm{O}}, 92.4^{\mathrm{O}}\right\}$ RMS(RPA) $=\left\{45.5^{\mathrm{O}}, 40.5^{\mathrm{O}}, 34.3^{\mathrm{O}}, 43.2^{\mathrm{O}}, 46.2^{\mathrm{O}}\right\}$ $\chi\{1,2,3,4,5\}=\{0.74,1.06,1.40,0.91,0.71\}$
$<\cos \left(\varphi-\varphi_{R P}\right)>\{1,2,3,4,5\}=\{0.577,0.735,0.841,0.669,0.559\}$
$<\cos 2\left(\varphi-\varphi_{R P}\right)>\{1,2,3,4,5\}=\{0.230,0.399,0.562,0.320,0.215\}$

