First indication of the triangular (v₃) and quadrangular (v₄) flow of light hydrogen isotopes in Au+Au collisions at \sqrt{s}_{NN} =2.4 GeV

Alexander Sadovsky for the HADES collaboraton sadovsky@inr.ru Institute for Nuclear Research RAS (Moscow)

- 1) Pictorial introduction
- 2) Reaction plane reconstruction in some experim.
- 3) HADES and its capability for azimuthal flows
- 4) Extraction and correction of flow parameters
- 5) Concluding remarks

XXII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", JINR, Dubna 15-20/08/2014

Physical information from azimuthal flows ^[2]

Azimuthal flows give us a chance to interpret A-A collisions in 3-dimensions

Barometer for EOS at low and intermediate energies

Access to viscosity of the medium involved

Could be sensitive to QGP phase transition (SPS, RHIC, LHC) Hydrodynamics predict v₁, v₂ collapse at intermediate energy range of A-A (supported by NA49 results at 40AGeV)

10 0 10

-10 0 10

-10 0 10

Introduction Definition of reaction plane, secondaries and spectators

Introduction Reaction plane as a reference for azimuthal distributions

Introduction Distributions of azimuthal flow

Typical experiments: FOPI @ GSI

[6]

KaoS: azimuthal flow analysis based on reaction plane obtained with help of spectator distribution

[7]

HADES @ SIS-18, GSI, Darmstadt

Systematic measurements of di-electron and strangeness in AA, NN, pA, π N and π A collisions:

Excitation function for low-mass lepton pairs and (multi-)strange baryons and mesons

Various aspects of baryon-resonance physics

* Fixed target experiment, large acceptance * Full azimuthal coverage

- * Hadron and lepton identification
- * e+e- pair acceptance 35%, inv.mass resolution 2% (ρ/ω region)
- * Event plane reconstruction

Detector

- * Electronics ~ 80.000 channels
- * DAQ: now up to 50 kHz event rate

HADES: Forward Wall technique

Spectator selection by time-of-flight

- \rightarrow beam position monitoring
- \rightarrow determination of event plane
- \rightarrow flow analysis

Forward	wall:	288	cells	
	warr.	200	CETT2	

L40	small	4x4cm	(0 ^o < θ	< 2°)
64	middle	8x8cm	(2 [°] < θ	< 3.3°)
84	large 1	6x16cm	(3.3°< 6	θ <7.2°)

Reconstruction of reaction plane (illustration: modified transverse momentum method)

[10]

Event plane flattening (1) Re-centering to get expected angular isotropy

[11]

Event plane flattening (2) Re-weighting to cancel remaining anisotropy

Small remaining anisotropy can be eliminated by re-weighting event plane angles to get flat the resulting distribution: $\frac{dN}{d \varphi_{EP}} \sim 1 + c_1 \cos(\varphi_{EP}) + c_2 \cos(2\varphi_{EP}) + c_3 \sin(\varphi_{EP})$

Event plane flattening (2) Re-weighting to cancel remaining anisotropy

Small remaining anisotropy can be eliminated by re-weighting event plane angles to get flat $\frac{dN}{d \varphi_{EP}} \sim 1 + c_1 \cos(\varphi_{EP}) + c_2 \cos(2\varphi_{EP}) + c_3 \sin(\varphi_{EP})$

Flow parameters correction on finite resolution

[12]

An estimate of v_1 and v_2 flow parameters can be done with correction (*Ollitrault method*) by reaction plane resolution due to limited angular resolution of the detector.

Proton acceptance vs. y₀ and p_t

Selection for **protons** :

- & good tracks selected
- & dE/dx in gaseous tracking chambers& appropriate reconstructed mass
- & similar to FOPI p_t -acceptance (u_{to} >0.4)

Azimuthal flow extracted for a set of y_o with efficiency correction

Protons flow Au+Au @ 1.23GeV/u HADES (preliminary) vs. FOPI

Empty symbols – FOPI Au+Au @ 1.2 and 1.5 GeV/u (W. Reisdorf et al. Nucl. Phys. A 876 (2012) : arXiv:1112.3180v1) Interpolated to Ekin=1.23 GeV/u to compare with HADES

Filled symbols – HADES Au+Au Ekin=1.23 GeV/u (preliminary)* * results obtained with help of GSI infrastructure

Protons: preliminary results azimuthal flow vs. y

Good agreement for v_1 and v_2 with FOPI data in same energy range interpolated to Ekin=1.23 GeV/u

However available statistics allows HADES to reconstruct higher Fourier harmonics v₃ and v₄ (Errors – stat. only.)

Rapidity distributions (integrated p_t) demonstrate odd v_3 and even v_4 harmonics – i.e. reasonable from considerations of symmetry

Comparing deuteron and triton in HADES with FOPI [16]

Selection for **d**, **t**: & good tracks selected & dE/dx in gaseous tracking chambers & appropriate reconstructed mass & similar to FOPI p, -acceptance (u,0>0.4)

Yet no detailed efficiency correction (actually rather flat response)

[17] Deuteron and triton in comparison with FOPI

Azimuthal flow data 1GeV – 3TeV

• Access to EOS at Ekin=1 – 2 GeV/u energies \rightarrow soft EOS (KaoS, FOPI, **HADES**) Ongoing K⁺ -flow analysis, plans for Λ

- Obtained preliminary azimuthal flow results from Au+Au collisions at beam kinetic energy of 1.23A GeV performed in 2012 by using High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI Darmstadt
- Accumulated High statistics data allow measuring flow components with respect to event plane. The event plane has been reconstructed with help of a projectile fragments detector
- Well known Fourier coefficients of direct (v1) and elliptic (v2) flows are in agreement with previously measured ones by FOPI collaboration
- Our preliminary analysis indicates a possibility to extract higher: triangular (v3) and quadrangular (v4) flow harmonics for proton deuteron and tritium, which were not seen yet at SIS-18 energy range $\sqrt{s}_{NN} \sim 2 \text{ GeV/u}$
- This measurement may offer additional constraints for the equation of state of the nuclear matter at high densities. Ongoing analysis to extract flow of strangeness.

NB: results obtained with help of GSI infrastructure

Thank you for your attention

The HADES Collaboration: 156 members, composed of 19 institutions from 10 European countries, (See: hades.gsi.de)

Backup slides

Prot. {v₁:u₁₀} preliminary HADES vs. FOPI

Prot. {v,:u, } preliminary HADES vs. FOPI

[A2]

New predictions for v_2 and v_3 with hybrid model [A3] (transport at the beginning of collision, hydrodynamics for hot and dense phase for flow production, and transport in the end)

a) Integrated v_3 at midrapidity |y| < 1.0 in central (b = 0 - 3.4 fm) and midcentral (b = 6.7 - 8.2 fm) collisions for collision energies $\sqrt{s_{NN}} = 5 - 62.4$ GeV. b) $v_3(p_T)$ in midcentral collisions for $\sqrt{s_{NN}} = 5 - 39$ GeV.

See: J. Auvinen, H. Petersen, arXiv:1310.7751v1, Phys.Rev.C88, 064908 (2013)

Collective flows and phase transition [A4]

Central Au + Au collisions calculated with:

2F-MPM: two-fluid hydrodynamics with the EoS from the Mixed-Phase model,

1F no PT: one-fluid with phase transition **1F with PT**: one-fluid w/o phase transition

> Central Au + Au collisions calculated with:

2F-MPM: two-fluid hydrodynamics with the EoS from the Mixed-Phase model,

3F (nonunity) with PT,

3F (unity) with PT:

three-fluid hydro with bag model EoS and with phase transition

See: [Y.B. Ivanov, E.G. Nikonov, W. Nörenberg, A.A. Shanenko, V.D. Toneev, Heavy Ion Phys. 15, 117 (2002) 752]

Prediction: v_2 flows at Au+Au@25AGeV^{A51}

Collective flow ↔ space-time evolution of fireball

Elliptic flow v_2 and its dependence on the p_t of particle sheds light on the degrees of freedom which prevail in the early stage of the collision.

Flow analysis and azimuthal angular distributions^[A6]

Azimuthal angular distribution of K⁺ for peripheral, semi-central and central events in collisions of (Au@1AGeV)+Au by KaoS collaboration. PRL.81(1998)1576-1579

In the frames of Fourier decomposition of obtained azimuthal distributions:

$$\frac{dN}{d\varphi} = C\left(1 + 2a_1\cos(\varphi) + 2a_2\cos(2\varphi) + \ldots\right)$$

which allows determination of directed (a_1) and elliptic (a_2) flows one may draw conclusions about the in-plane and outof plane emission, in-medium potential...

Spectator selection with HADES FW

All charges accepted, but noise and magic peak are taken away individually

[A7]

Estimating RP-angular resolution of FW

[A8]

Simulation: dN/dM(TOF+RPC) SHIELD AuAu@1.25AGeV, hGeant, DST

Estimating RP-angular resolution of FW (with A^B subevent method)

[A9]

$$\begin{split} \text{RMS}(\text{A}^{\text{B}}) = & \{1,2,3,4,5\} = \{91.1^{\circ}, 80.9^{\circ}, 68.7^{\circ}, 86.4^{\circ}, 92.4^{\circ}\} \\ \text{RMS}(\text{RPA}) = & \{45.5^{\circ}, 40.5^{\circ}, \textbf{34.3}^{\circ}, 43.2^{\circ}, 46.2^{\circ}\} \\ & \chi\{1,2,3,4,5\} = \{0.74, 1.06, 1.40, 0.91, 0.71\} \\ & < \cos(\varphi - \varphi_{\text{RP}}) > & \{1,2,3,4,5\} = \{0.577, 0.735, 0.841, 0.669, 0.559\} \\ & < \cos(\varphi - \varphi_{\text{RP}}) > & \{1,2,3,4,5\} = \{0.230, 0.399, 0.562, 0.320, 0.215\} \end{split}$$

