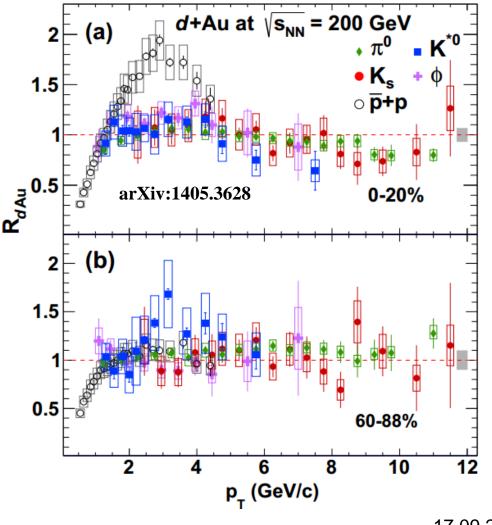


Recent results from PHENIX on jet suppression and direct photon production

V. Riabov for the PHENIX collaboration

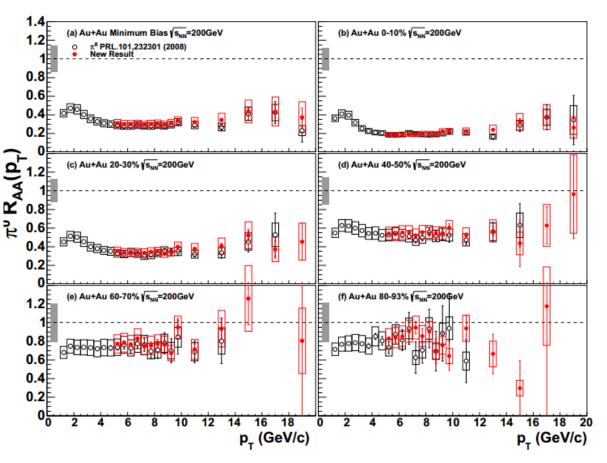
PHENIX data


RHIC Run	Year	Species	Energy	Ldt
Run-1	2000	Au+Au	130 GeV	1 μb-1
Run-2	2001-2	Au+Au	200 GeV	24 μ b-1
Run-2		Au+Au	19 GeV	0.4 µb-1
		p+p	200 Gev	150 nb-1
Run-3	2002/3	d+Au	200 GeV	2.74 nb-1
		p+p	200 GeV	0.35 nb-1
Run-4	2003/4	Au+Au	200 GeV	241 μ b-1
		Au+Au	62.4 GeV	9 μb-1
Run-5	2005	Cu+Cu	200 GeV	3 nb-1
		Cu+Cu	62.4 GeV	0.19 nb-1
		Cu+Cu	22.4 GeV	2.7 μ b-1
Run-6	2006	p+p	200 GeV	10.7 pb-1
		p+p	62.4 GeV	100 nb-1
Run-7	2007	Au+Au	200 GeV	813 μ b-1
Run-8	2007/2008	d+Au	200 GeV	80 nb-1
		p+p	200 GeV	5.2 pb-1
		Au+Au	9.2 GeV	
Run-9	2009	p+p	200 GeV	16 pb-1
		p+p	500 GeV	14 pb-1
Run-10	2010	Au+Au	200 GeV	1.3 nb-1
		Au+Au	62.4 GeV	100 μ b-1
		Au+Au	39 GeV	40 μ b-1
		Au+Au	7.7 GeV	260 mb-1
Run-11	2011	p+p	500 GeV	27 pb-1
		Au+Au	200 GeV	915 μ b-1
		Au+Au	27 GeV	5.2 μ b-1
		Au+Au	19.6 GeV	13.7 M events
Run-12	2012	p+p	200 GeV	9.2 pb-1
		p+p	510 GeV	30 pb-1
		U+U	193 GeV	171 μ b-1
		Cu+Au	200 GeV	4.96 nb-1
Run-13	2013	p+p	510 GeV	156 pb-1
Run-14	2014	Au+Au	15 GeV	44.2 µb-1
		Au+Au	200 GeV	2.56 nb-1

Hadrons

Hadrons in d+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

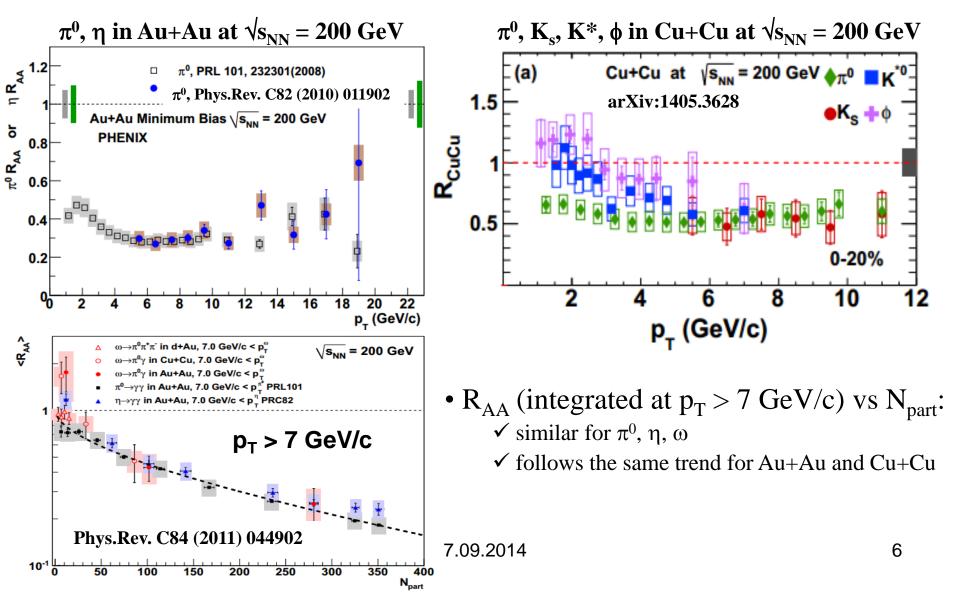
• Nuclear modification factor:


$$R_{AA} = \frac{dN_{AA} / dy}{\langle N_{coll} \rangle \cdot dN_{pp} / dy}$$

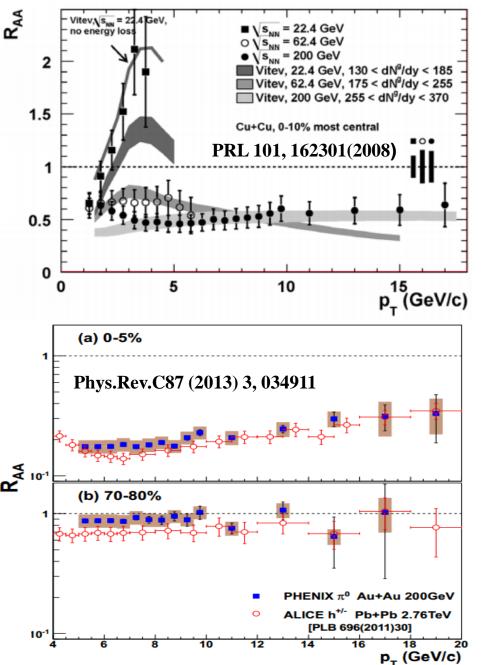
- In peripheral collisions R_{dA} is consistent with unity for all hadrons at $p_T > 2 \text{ GeV/c}$
- In central collisions:
 - ✓ R_{dA} for all mesons is the same with a hint of modest Cronin-like enhancement at intermediate p_T and suppression at high p_T
 - ✓ Production of baryons (protons) is strongly enhanced
 - ✓ Cronin enhancement for hadrons is weaker at RHIC than at SPS

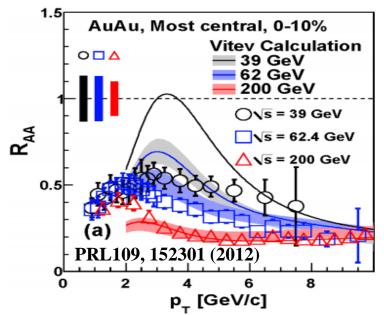
Hadrons at high p_T , Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

• Production of hadrons is suppressed in (semi)central heavy ion collisions ↔ jet quenching; Phys.Rev.Lett. 88 (2002) 022301



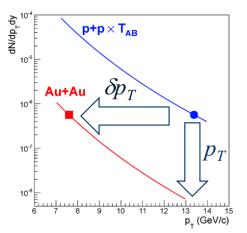
Phys.Rev.C87 (2013) 3, 034911 π^{0} , 2004 data π^{0} , 2007 data

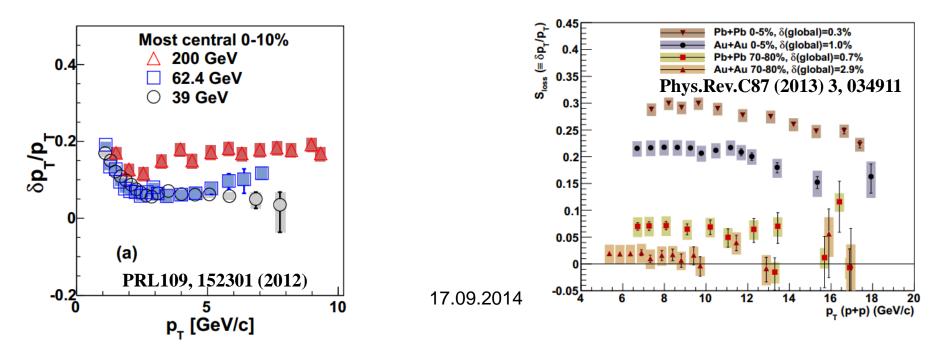

- System size dependence of R_{AA}
- New measurements confirm previous observations
- In central collisions suppression is strongest (~ 0.2) at 6-8 GeV/c and decreases at higher/lower momenta
- In peripheral collisions $R_{AA} \sim 0.8$


Species dependence, A+A at $\sqrt{s_{NN}} = 200 \text{ GeV}$

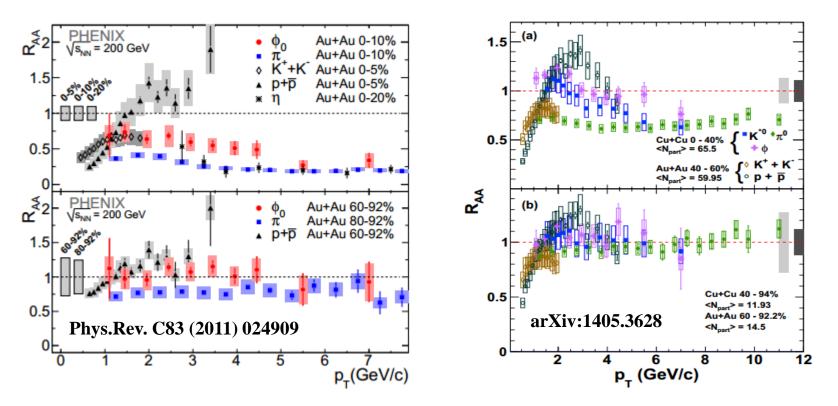
• Hadrons (π^0 , η , K_s , K^* , ϕ) are similarly suppressed at high $p_T > 6 \text{ GeV/c}$

Energy dependence, A+A at $\sqrt{s_{NN}}$ = 22-2760 GeV

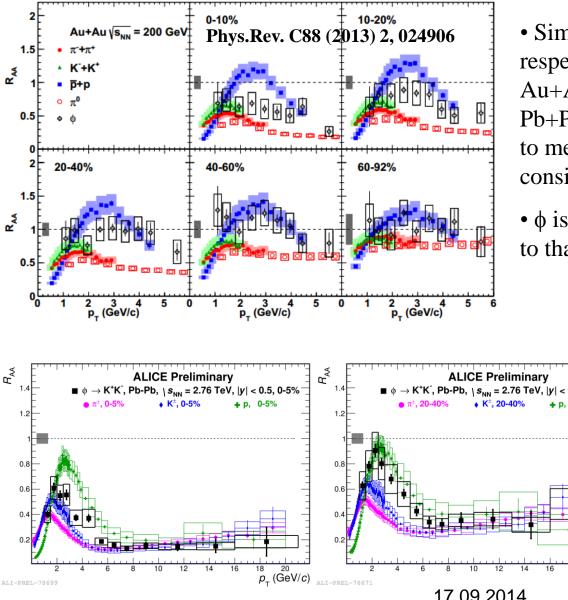



- Production of π^0 is suppressed in central Pb+Pb at $\sqrt{s_{NN}} = 2760$ GeV, Au+Au at $\sqrt{s_{NN}} = 39$, 62, 200 GeV and Cu+Cu at $\sqrt{s_{NN}} = 62$, 200 GeV
- Enhancement takes over suppression in a range of $\sqrt{s_{NN}}$ from 22 to 39 GeV
- Similar suppression:
- ✓ Au+Au @ 62 and 200 GeV
- ✓ Au+Au @ 200 GeV and Pb+Pb @ 2760 GeV

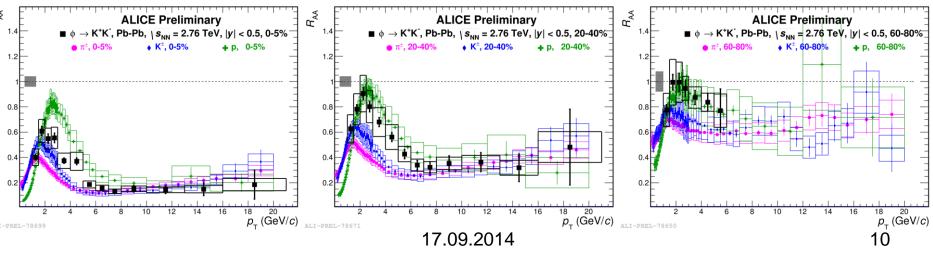
Fractional momentum loss, A+A at √s_{NN}=22-2760 GeV


• Estimate energy loss by $\delta p_T/p_T$ for high- p_T hadrons

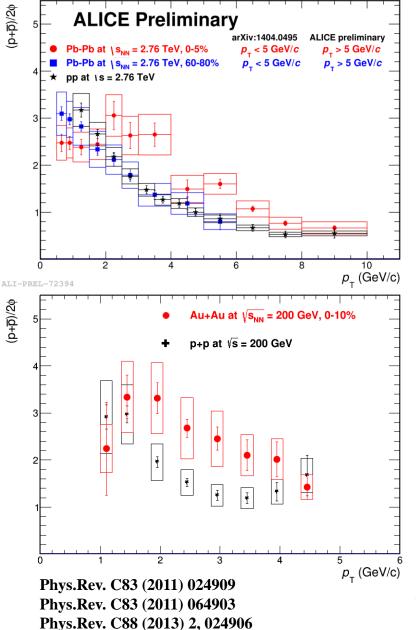
- Similar $R_{AA} \leftrightarrow$ different energy losses due to steeper production spectra at lower $\sqrt{s_{NN}}$
- $\delta p_T/p_T$ changes by a factor of 1.5 (6) from AuAu@200 (62) to PbPb@2760


Hadrons at intermediate p_T , A+A at $\sqrt{s_{NN}} = 200 \text{ GeV}$

• Species dependence of R_{AA} in central Au+Au/Cu+Cu collisions at intermediate p_T :


- \checkmark bayons (protons) are enhanced
- \checkmark mesons are suppressed
- \checkmark no apparent mass dependence of suppression
- \checkmark mesons containing strange quarks (K*, $\varphi)$ show an intermediate suppression

Centrality dependence, A+A at $\sqrt{s_{NN}} = 200-2760$ GeV

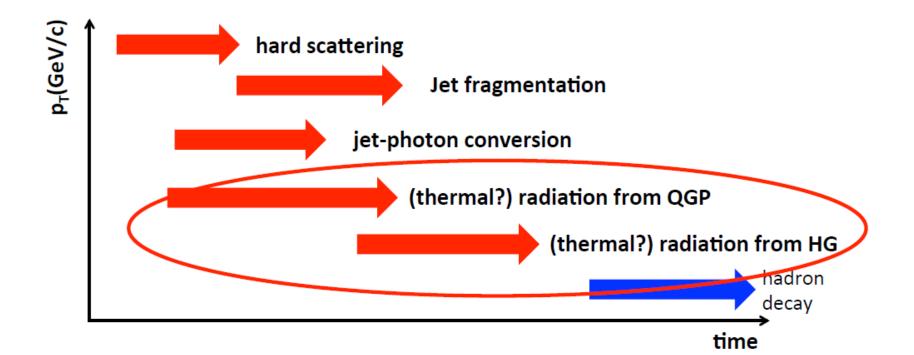


• Similar evolution of R_{AA} for ϕ with respect to that for π^{\pm} , K[±], p and anti-p in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and Pb+Pb at $\sqrt{s_{NN}} = 2760 \text{ GeV} \leftrightarrow \phi$ is closer to mesons in most central collisions and is consistent with protons in peripheral

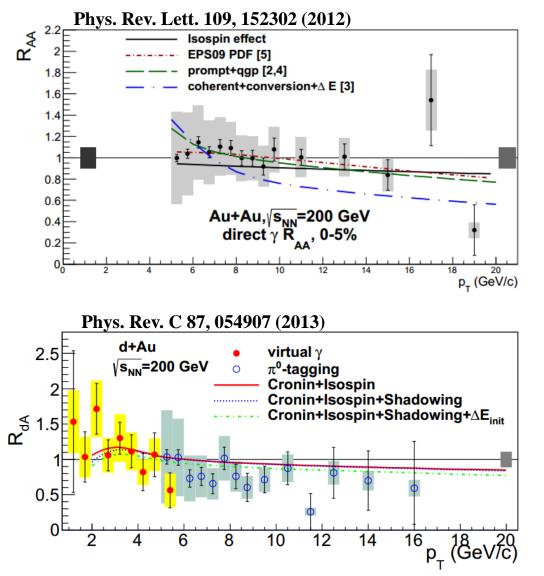
• ϕ is a meson that has a mass very similar to that of a proton

p/ ϕ vs p_T, A+A at $\sqrt{s_{NN}} = 200-2760 \text{ GeV}$

• In central Pb+Pb collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ the p/ ϕ ratio is a flat function of p_T at intermediate $p_T \leftrightarrow$ shape of production spectra is defined by particle masses, not by baryon/meson or quark content differences \leftrightarrow consistent with hydrodynamics \leftrightarrow difference in R_{AA} between p and ϕ is driven by difference in p+p references

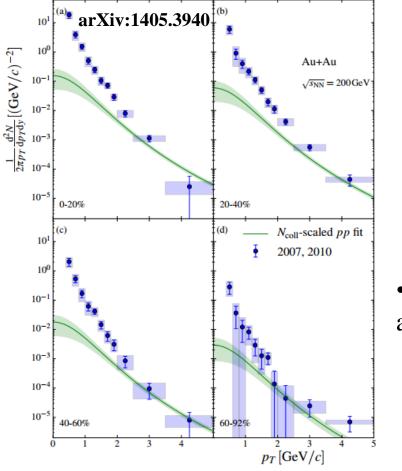

• Observe a similar evolution of p/ϕ ratio from p+p to central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, although full flattening of the ratio vs p_T is not achieved \leftrightarrow interpretation is incomplete

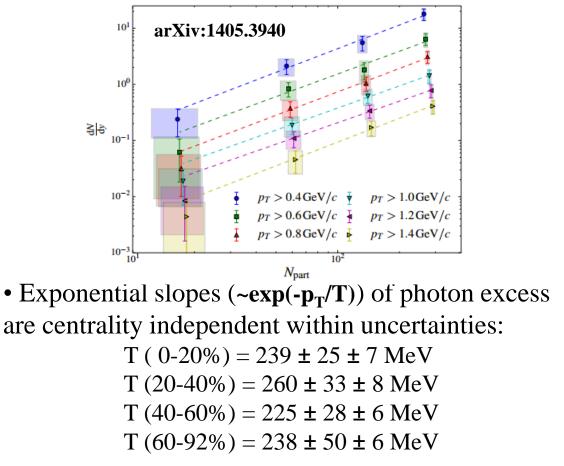
• Similar ratios for particles of similar mass could shed some light


Direct photons

Direct photons

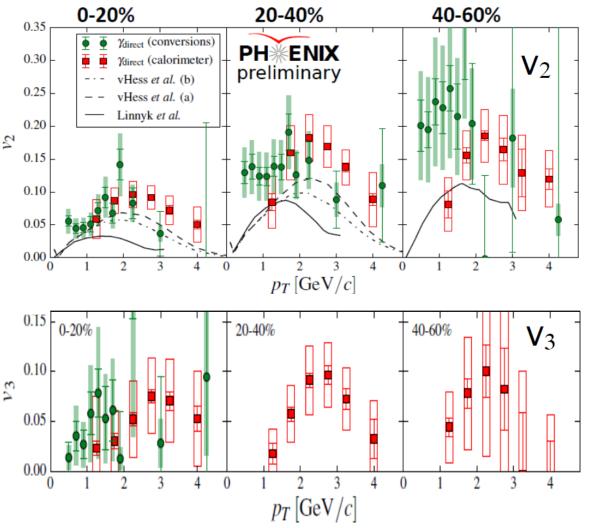
- Direct photons are all photons except for those coming from hadron decays:
 - \checkmark produced during all stages of the collision
 - \checkmark strongly interacting matter is transparent for photons \rightarrow a good probe


High-p_T **direct** photons , A+A at $\sqrt{s_{NN}} = 200$ GeV



• R_{dA} and R_{AA} are consistent with unity in d+Au and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at all centralities

- In quantitative agreement with model calculations
- There is a place for Cronin-like enhancement in d+Au collisions at $\sqrt{\text{sNN}} = 200 \text{ GeV} \rightarrow \text{initial state}$ effect


Excess of photon yields , Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Excess of photon yields increases as AN_{part}^{α} , where $\alpha = 1.48 \pm 0.08 (stat.) \pm 0.04 (sys.)$
- Centrality dependence is not an artifact of the lowest p_T points, same slope is observed as we increase the lower limit of integration
- Suggests early emission when temperature is still very high 17.09.2014

Photon anisotropy, Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

• Two new methods to measure direct photon v_2 and v_3 produce consistent results

• No strong centrality dependence for v₃

• Magnitudes of v_2 and v_3 are similar that of π^0

• Challenge for dynamical models

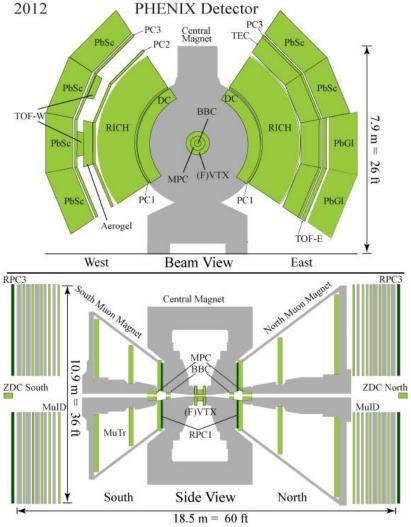
• Large flow suggests late emission when temperature is low and collective motion is large

Conclusion

- Hadrons and direct photons at high p_T:
 - ✓ R_{dA} for all measured hadrons is consistent with unity with a hint of modest suppression
 - ✓ similar suppression of all measured hadrons in central heavy ion collisions, R_{AA} ~ 0.2
 - ✓ $\delta pT/pT$ changes by a factor of 1.5 (6) from AuAu@200 (62) to PbPb@2760
 - ✓ direct photons R_{dA} and R_{AA} are consistent with unity, quantitative agreement with models

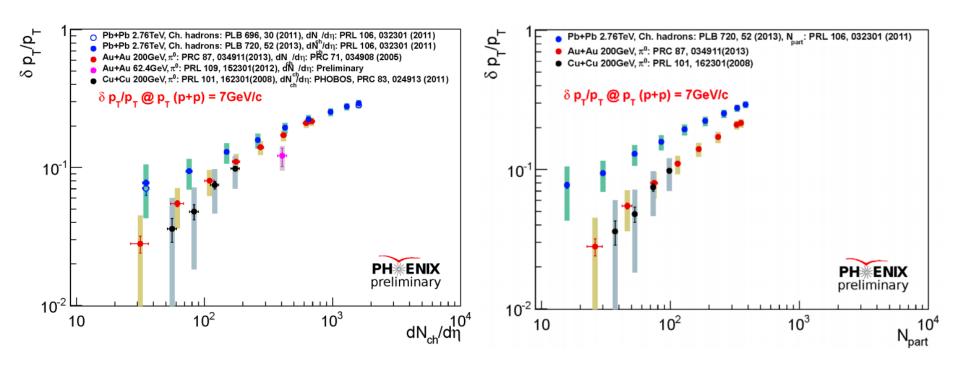
Measurements are consistent jet quenching from parton energy loss in hot and dense matter

- Hadrons at intermediate p_T:
 - R_{dA} splits between mesons and baryons; modest Cronin for mesns and ~ 2 enhancement for protons
 - R_{AA} hierarchy for different hadrons with no apparent mass and quark content dependence
 - similar evolution at RHIC and LHC
 - p/ϕ ratio flattens vs p_T indicating larger importance of flow


Understanding of dominating hadron production mechanisms (coalescence, flow, fragmentation etc.) is still incomplete

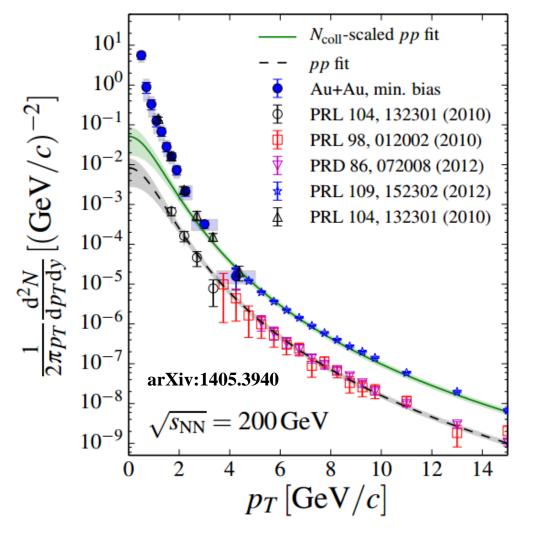
- Soft direct photons:
 - \checkmark large excessive yield of photons with respect to $\rm N_{coll}$ scaled pp results
 - \checkmark shape of pT spectra doesn't depend on centrality within uncertainties
 - ✓ photon excess increases with centrality as N_{part}^{α} , $\alpha \approx 1.481$
 - \checkmark large v2 and v3 comparable to that of hadrons

New measurements for direct photons put new constraints on hydrodynamic time evolution and modeling of radiative emission 17.09.2014 17



PHENIX detector

- PHENIX has been designed to measure rare processes involving leptons and photons at the highest RHIC luminosities
- Central arms, each $|\eta| < 0.35$ and $\Delta \phi = \pi$:
 - ✓ tracking, $\delta p/p \sim 0.7\% \oplus 1.1\% p[GeV/c]$
 - ✓ calorimetry, $\sigma(E)/E = \frac{8.1(5.9)\%}{\sqrt{E[GeV]}} \oplus 2.1(0.8)\%$ for PbSc(PbGl): γ , e[±], π^0 , η , ω , ϕ etc.
 - ✓ EMC (~400 ps), TOF-E (~ 120 ps), TOF-W (~ 100 ps): h[±] ID:
 - ✓ EMC & RICH: e^{\pm} ID and Lvl-1 trigger
- Two forward arms, $1.1 < |\eta| < 2.3$, $\Delta \phi = 2\pi$
- BBC, ZDC provide the minbias trigger, determine z-coordinate of the collision vertex, centrality of events in p(A)+A
- MPC, (F)VTX


$\delta p_T / p_T$ over collision systems

• $\delta p_T/p_T$ vs $dN_{ch}/d\eta$ dependences for all collision systems merge to one curve at large values of dNch/d η independent of $\sqrt{s_{NN}}$

• At the same $\sqrt{s_{NN}}$ experimental points follow the same scaling for different collision systems

Real and virtual photons

• New analysis using external conversion of real photons on detector materials (HBD backplane)

• Agreement with earlier virtual photon results

• Extended p_T range, more centrality selections, higher precision