Multifragment break-up of ${ }^{12} \mathrm{C}$ in photonuclear reactions: a theorist's point of view

I. Pshenichnov ${ }^{1}$, A. Turinge, A. Lapik,

 A. Mushkarenkov, V. Nedorezov for the GRAAL CollaborationInstitute for Nuclear Research, Russian Academy of Sciences 117312 Moscow, Russia
${ }^{1)}$ e-mail: pshenich@inr.ru
XXII International Baldin Seminar on High-Energy Physics Problems Dubna, Russia, September 15-20, 2014

Content

- Absorption of $\sim 1 \mathrm{GeV}$ photons by ${ }^{12} \mathrm{C}$ - an experiment at the GRAAL facility to study multifragment decays of ${ }^{12} \mathrm{C}$
- Details of this experiment in Prof. Nedorezov's talk
- Here a theorist's point of view is presented:
- a model to describe the break-up of ${ }^{12} \mathrm{C}$;
- comparison with photonuclear reactions on heavy nuclei and induced by other projectiles;
- relations to electromagnetic dissociation of light nuclei
- Comparison with the rates of multifragment decays measured at GRAAL
- Fragmentation reactions in carbon-ion therapy

I. Modelling of photonuclear reactions

Photoabsorption on carbon: a variety of processes

Basics of the photonuclear reaction model. It is a part of the Relativistic ELectromagnetic DISsociation (RELDIS) model

- Firstly, an Intranuclear cascade process initiated by a projectile is simulated
$t=0 \mathrm{fm} / \mathrm{c}$

- Secondly, the properties of a residual nucleus (A, Z, E^{*}), which is left after the completion of the intranuclear cascade are calculated
$\mathrm{t} \sim 1000 \mathrm{fm} / \mathrm{c}$
- Thirdly, the decay of the thermalized residue is modelled by evaporation/SMM/Fermi break-up models
$\mathrm{t} \sim 100 \mathrm{fm} / \mathrm{c}$ particle-hole configurations, pre-equlibrium emission $\rightarrow A, Z, E^{*}$

Let's estimate the number of partitions to split a nucleus

Famous Euler's problem: find the number of ways, $P\left(A_{0}\right)$, an integer A_{0} can be represented as a sum of integers, $A_{0}=A_{1}+A_{2}+A_{3}+\ldots$

The total number of partitions is rapidly increasing with A_{0} :
$P(10)=42, P(12)=77, \quad P(16)=231$,
Large enough already for decays of excited carbon and oxygen nuclei!
$P(50)=2.17 * 10^{5}, \quad P(100)=2 * 10^{8}$
See A.S. Botvina, A.D. Jackson, I.N. Mishustin, Phys. Rev. E62 (2000) R64
 At large A_{0} the result is well approximated by asymptotic for partitions Hardy-Ramanujan formula, with the average partition multiplicty:

$$
P\left(A_{0}\right)=\frac{1}{4 \sqrt{3} A_{0}} \exp \left(\pi \sqrt{\frac{2 \mathrm{~A}_{0}}{3}}\right) \quad\langle M\rangle=\frac{1}{\pi} \sqrt{\frac{3 \mathrm{~A}_{0}}{2}} \ln \left(\frac{6 \mathrm{~A}_{0}}{b \pi^{2}}\right) \quad b=0.3150
$$

Specific to light nuclei (A<17): Fermi break-up model

- Excitation energies of light nuclei can be comparable to their total binding energies explosive decays.
- Fermi break-up model implemented by A.S. Botvina and co-authors
- Fragments are considered in their ground states and also in low-energy excited states stable to nucleon emission.
- The probability of a given decay channel is defined by its statistical weight.

Wassily Kandinsky "Several circles", 1926 Guggenheim Museum, NY

- The list of possible decay channels is quite long, e.g. ~ 200 channels for ${ }^{12} \mathrm{C}, \sim 1000$ for ${ }^{16} \mathrm{O}$

RELDIS model developed at INR, NBI, GSI, FIAS

(25+ papers published since 1995)

A.S. Iljinov, ..., I.P. et al., Nucl. Phys. A 616(1997)575

P.Golubev, ..., I.P. et al., Nucl. Phys. A 806(2008)216

I.P. et al., Eur. J. Phys. A 24(2005)69
fission of
heavy nuclei by photons
I.P. et al., Phys. Rev. C 57(1998)1920

Electromagnetic dissociation at CERN SPS SIS (GSI), AGS (BNL) (see below)

Average excitation energy of a residual nucleus at the end of

 the intranuclear cascade.

To be compared: proton, antiproton, photon, and ${ }^{4} \mathrm{He}$ projectiles

Photons heat the nucleus less effectively compared to other projectiles

Antiprotons work good at low energy due to their annihilation

Ions (e.g. ${ }^{4} \mathrm{He}$) is the best option to heat up the nucleus

Comparison of photon absorption by ${ }^{12} \mathrm{C}$ and ${ }^{197} \mathrm{Au}$

Due to a small number of nucleons in ${ }^{12} \mathrm{C}$ the average excitation energy calculated per nucleon of the residual nucleus is much higher compared to the photoabsorption on ${ }^{197} \mathrm{Au}$.

The onset of the explosive break-up is expected at $\sim 3 \mathrm{MeV} /$ nucleon

[^0]J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257 (1995) 133

The average values are not very informative: the distribution of excitation energy is very wide

Average number of fragments of ${ }^{12} \mathrm{C}$ of a given element: Fermi Break-up model by A.S. Botvina et al. vs Geant 4 implementation

Calculated map of nuclear fragments

II. Comparison with the GRAAL data

General layout of the GRAAL setup

4π detector with a good efficiency of registration of protons and neutrons. This is important for studies of decays of highly excited nuclei.

Distinguishing protons from pions in the BGO calorimeter. Simulated (a) and detected (b) events are shown

Measured angular distribution of nucleons produced in photodisintegration of ${ }^{12} \mathrm{C}$ in events with more than 7 nucleons.

Distributions in the number of protons and neutrons

Measured (points) and calculated (histograms) probabilities of photodisintegration of ${ }^{12} \mathrm{C}$ at $0.7-1.5 \mathrm{GeV}$ with given numbers of protons (left) and neutrons (right). Only statistical errors are shown.

Neutron multiplicity distributions

Demonstrate the possibility of a complete disintegration of ${ }^{12} \mathrm{C}$ into individual nucleons

Very rare
charge-exchange events

Measured and calculated probabilities of ${ }^{12} \mathrm{C}$ photodisintegration with a given number of fragments.

Very good agreement with calculated distributions in all three intervals of photon energy!

On average, 8 fragments are produced once per ~ 100 events, while 12 fragments (complete disintegration) once per 2000 events.

Electromagnetic dissociation of light nuclei in nuclear emulsion

Wide distributions of virtual photon energies

Multifragment decays are also seen

Described w/o multiple photon absorption. I.P. et al. Phys. Rev. C 57 (1998) 1920

III. Why it is important to study the fragmentation of ${ }^{12} \mathrm{C}$?

Carbon-ion therapy of cancer: nuclear beams are focused on tumor thus sparing healthy tissues and organs at risk

Fragmentation of $400 \mathrm{~A} \mathrm{MeV}{ }^{12} \mathrm{C}$ beam

- Up to 70% of beam nuclei are fragmented
- Secondary fragments are created, from protons till Boron with various radiobiological properties

A lot of work for nuclear fragmentation models!

Data: E. Haettner et al., Rad. Prot. Dosim. 122 (2006)48

De-excitations in therapy simulations

Evaporation Fermi break-up

Data: E. Haettner et al., Rad. Prot. Dosim. 122 (2006)48, within $\theta<10^{\circ}$ acceptance

Conclusions

- The RELDIS model predicts a wide distribution of excitation energies of nuclear residues which are created in the photoabsorption of $\sim 1 \mathrm{GeV}$ photons by ${ }^{12} \mathrm{C}$ nuclei.
- The most probable photodisintegration events are characterized by emission of 1 or 2 nucleons.
- However, a complete disintegration of ${ }^{12} \mathrm{C}$ into individual nucleons is also seen in a small $(\sim 0.05 \%)$ fraction of photoabsorption events.
- Isotropic distribution of nucleon emission in high (>7) multiplicity events suggests that they are emitted by a hot thermalized nuclear residue rather than in a cascade process.
- The model describes the fragment multiplicity distributions very well.
- The present study helps to understand nuclear reactions taking place in human tissues during carbon-ion therapy of cancer.

Back-up slides

Distinguishing of charged fragments and neutrons from pions and photons in the forward detector. Simulated (a) and detected (b) events are shown.

Energy distributions of nucleons produced in photodisintegration of 12C. Measured (blue line) and calculated (red line) distributions in the laboratory system and calculated distribution (green line) for the center of mass svstem

Probability to have a given number of fired crystals (cluster size) for neutrons, photons and low energy photons which hit the BGO ball.

Average numbers of protons and neutrons measured by the BGO ball and forward detectors

Protons Neutrons
BGO ball
Forward
2,05 $\pm 0,03$
0,57 $\pm 0,01$
$0,35 \pm 0,01 \quad 0,04 \pm 0,01$ direction

Statistical description of nuclear break-up: SMM

J.P. Bondorf, R. Donangelo, I.N. Mishustin, et al., Nucl. Phys. A443 (1985) 321; A444 (1985) 460;
J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257 (1995) 133

Ensemble of nucleons and fragments in thermal equilibrium characterized by
neutron number N_{0}
proton number $Z_{0}, N_{0}+Z_{0}=A_{0}$
excitation energy $E^{*}=E_{0}-E_{\mathrm{CN}}$
break-up volume $V=(1+\kappa) V_{0}$

- Baryon number and charge conservation
- in micro-canonical description:

$$
\Sigma A N_{\mathrm{AZ}}=A_{0}, \quad \Sigma Z N_{\mathrm{AZ}}=Z_{0}
$$

or in macro canonical: $\Sigma A<N_{\mathrm{AZ}}>=A_{0}, \quad \Sigma Z<N_{\mathrm{AZ}}>=Z_{0}$

- Statistical distribution of probabilities: $W_{f} \sim \exp \left\{S_{\mathrm{f}}\left(A_{0}, Z_{0}, E^{*}, V\right)\right\}$

To find more on the RELDIS model:

A.S. Iljinov et al.,

Nucl. Phys. A616 (1997) 575
I.A.Pshenichnov et al., Phys.Rev. C57 (1998) 1920; Phys. Rev. C60 (1999) 044901; Phys. Rev. C64 (2001) 024903
I.A. Pshenichnov, Phys. Part. Nuclei 42 (2011) 21

Total photoabsorption cross section on nuclei

M.V.Kossov, Eur. Phys. J. A 14, (2002) 377

Meson photoproduction on nucleons

γp	γn
$\gamma p \rightarrow \pi^{+} n$	$\gamma n \rightarrow \pi^{-} p$
$\gamma p \rightarrow \pi^{0} p$	$\gamma n \rightarrow \pi^{0} n$
$\gamma p \rightarrow \pi^{-} \Delta^{++}$	$\gamma n \rightarrow \pi^{-} \Delta^{+}$
$\gamma p \rightarrow \pi^{0} \Delta^{+}$	$\gamma n \rightarrow \pi^{0} \Delta^{0}$
$\gamma p \rightarrow \pi^{+} \Delta^{0}$	$\gamma n \rightarrow \pi^{+} \Delta^{-}$
$\gamma p \rightarrow \eta p$	$\gamma n \rightarrow \eta n$
$\gamma p \rightarrow \omega p$	$\gamma n \rightarrow \omega n$
$\gamma p \rightarrow \rho^{0} p$	$\gamma n \rightarrow \rho^{0} n$
$\gamma p \rightarrow \rho^{+} n$	$\gamma n \rightarrow \rho^{-} p$
$\gamma p \rightarrow \pi^{+} \pi^{-} p$	$\gamma n \rightarrow \pi^{+} \pi^{-} n$
$\gamma p \rightarrow \pi^{0} \pi^{+} n$	$\gamma n \rightarrow \pi^{0} \pi^{-} p$
$\gamma p \rightarrow \pi^{0} \pi^{0} \pi^{0} p$	$\gamma n \rightarrow \pi^{0} \pi^{0} \pi^{0} n$
$\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{0} p$	$\gamma n \rightarrow \pi^{+} \pi^{-} \pi^{0} n$
$\gamma p \rightarrow \pi^{+} \pi^{0} \pi^{0} n$	$\gamma n \rightarrow \pi^{-} \pi^{0} \pi^{0} p$
$\gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-} n$	$\gamma n \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
$\gamma p \rightarrow i \pi N(4 \leq i \leq 8)$	$\gamma n \rightarrow i \pi N(4 \leq i \leq 8)$
(35)	(35)

[^0]: J.P. Bondorf, R. Donangelo, I.N. Mishustin, et al., Nucl. Phys. A443 (1985) 321; A444 (1985) 460;

