INVESTIGATION OF THE dp-NON-MESONIC BREAKUP REACTION AT 300-500MeV AT NUCLOTRON

The XXII International Baldin Seminar on High Energy Physics Problems
Dubna, Russia, September 15-20, 2014

The purpose of this experimental program is to obtain the information about spin - dependent part of the 3 NF from two processes:

1. dp-elastic scattering;
2. dp-breakup with registration of two protons at energy 300-500 MeV.

dp breakup reaction.

This slide presents tensor analyzing power Ayy (top) and differential cross section in selected breakup configurations at 200 MeV (bottom).
-The light shaded band (blue) contains the theoretical predictions based on CD-Bonn, AV18, Nijm I, II and Nijm 93.
-The darker band (magenta) represents predictions when these NN forces are combined with the TM 3NF. -The solid line is for AV18+Urbana IX and the dashed line for CD Bonn+TM
One can see that the inclusion of 3NF have great impact on the values of analyzing power and cross section.
Θ_{1} - polar angle of the 1-st proton.
Θ_{2} - polar angle of the 2-nd proton.
S - arc length along the kinematical curve.
Φ_{12} - azimuth angle with respect to the horizontal plane.

Detection system for dp-breakup.

Setup of the experiment at Internal Target Station.

Detection angles for registration of two protons

The position of the detectors at Internal Target Station at Nuclotron

The calibration of E scintillation

detectors

Results calibration E-scintillator: 1. Cosmic muons;
2. pp-quasi elastic:
for 1 pairs $90^{\circ} \mathrm{cms}$, for 2 pairs $110^{\circ} \mathrm{cms}$;
3. dp-elastic scattering for 870 cms .

Also the calibration for ΔE scintillation detectors were obtained.

Edet $=\mathrm{E}+\left(\Delta \mathrm{E}_{1}+\Delta \mathrm{E}_{2}\right) / 2$

Simulation of the
dp-ppn reaction
euterova
21.0 cm scintillator

Energy losses of protons when passing through scintillator

Acceptance of the setup for coplanar geometry.

Experiment to study of dp breakup.

The missing mass spectrum.
Deuteron energy: 400 MeV .
Configuration: $\Theta_{1}=25^{0}, \Theta_{2}=43.6^{0}$,

$$
\varphi_{12}=178.5^{0}
$$

dp-elastic scattering: $87^{0} \mathrm{cms}$
Energy deuteron: 229.7MeV
Energy proton:170.32MeV
Cut on missing mass:

1. dp-elastic\&dp-breakup:
<950MeV
2. dp-breakup:
$940 \mathrm{MeV} \pm 10 \mathrm{MeV}$

10

Experiment data for dp breakup.

 Bpucture

Correlation of the two energies with the cut on missing mass.
Deuteron energy: 400 MeV .
Configuration: $\Theta_{1}=25^{0}, \Theta_{2}=43.6^{\circ}$,

$$
\varphi_{12}=178.5^{\circ}
$$

dp-elastic scattering: $87^{0} \mathrm{cms}$
Energy deuteron: 229.7 MeV
Energy proton:170.32MeV
Black curve - kinematic locus for dp-breakup reaction.

11

$\mathrm{CH}_{2}-\mathrm{C}^{12}$ subtraction

oructure

Configuration:
$\Theta_{1}=25.2^{0}, \Theta_{2}=43.9^{0}, \varphi_{12}=178.5^{0}$
dp-elastic scattering: $87^{\circ} \mathrm{cms}$
Deuteron energy: 300 MeV .
CH_{2} - red color spectra C^{12} - green color

Configuration:

$$
\Theta_{1}=33.9^{0}, \Theta_{2}=43.9^{0}, \varphi_{12}=133.8^{0}
$$

The deuteron energy 300 MeV .

Bructure

euteroa

$$
\begin{gathered}
\Theta_{1}=25.2^{0}, \Theta_{4}=33.9^{0}, \\
\varphi_{14}=135.3^{0}
\end{gathered}
$$

$$
\begin{gathered}
\Theta_{2}=25.2^{0}, \Theta_{3}=33.9^{0}, \\
\varphi_{23}=133.5^{0}
\end{gathered}
$$

$\Theta_{3}=33.9^{0}, \Theta_{4}=33.9^{0}$,
$\varphi_{34}=180^{\circ}$

Correlations of the proton energies with the cut on missing mass($940 \mathrm{MeV} \pm 10 \mathrm{MeV}$) of deuteron energy 300 MeV .

The deuteron energy 400 MeV .

enterora

$$
\begin{gathered}
\Theta_{1}=25^{0}, \Theta_{3}=33.7^{0} \\
\varphi_{13}=44.6^{0}
\end{gathered}
$$

$$
\begin{gathered}
\Theta_{1}=25.2^{0}, \Theta_{8}=53.6^{0}, \\
\varphi_{18}=135.5^{0}
\end{gathered}
$$

$$
\begin{gathered}
\Theta_{2}=25^{0}, \Theta_{4}=33.7^{0}, \\
\varphi_{24}=46.5^{0}
\end{gathered}
$$

Correlations of the proton energies with the cut on missing mass($940 \mathrm{MeV} \pm 10 \mathrm{MeV}$) of deuteron energy 400 MeV .

The deutron energy 500 MeV .

euteron

$\Theta_{1}=24.7^{0}, \Theta_{3}=33.3^{0}$,
$\varphi_{13}=44.6^{0}$

$$
\Theta_{1}=24.7^{0}, \Theta_{8}=53.3^{0}
$$

$$
\varphi_{18}=135.4^{0}
$$

$\Theta_{2}=24.7^{0}, \Theta_{4}=33.3^{0}$,
$\varphi_{24}=46.5^{0}$

Correlations of the proton energies with the cut on missing mass($940 \mathrm{MeV} \pm 10 \mathrm{MeV}$) of deuteron energy 500 MeV .

Conclusion.

- The preliminary results for $\mathrm{dp} \rightarrow \mathrm{ppn}$ reaction at $300-500 \mathrm{MeV}$ for different geometry at Internal Target Station at Nuclotron are obtained.
- The procedure of selection of events relating to dp - breakup reaction is established.
- The setup on the study of deuteron non-mesonic breakup reaction was put into operation.

THANK YOU FOR THE ATTENTION:

