THE DIRAC THEORY AND CONFINEMENT

I.B.Pestov ${ }^{1 \dagger}$
(1) Bogoliubov Laboratory of Theoretical Physics,JINR,Dubna 141980, Russia
\dagger E-mail: pestov@theor.jinr.ru

1 Proposal

Before to formulate our proposal we remind some definitions. The coordinate space R^{4} is the space of 4-tuples of real numbers $\left(q^{1}, q^{2}, q^{3}, q^{4}\right)$ with usual topology. The mathematical space is differential manifold M whose points are specified by set of one-to-one mappings between the open regions of M and R^{4}. When this is done the variables $q^{1}, q^{2}, q^{3}, q^{4}$ define the system of coordinates of M. It is evident that $q^{1}, q^{2}, q^{3}, q^{4}$ should be considered on equal footing. Space-time is a mathematical space whose points must be specified by both space and time coordinates. Our goal is to recognize a regular transition from a mathematical space to space-time and with this derive new information about nature of space and time. To this end we consider the Dirac equation in a mathematical space. A comparison will be produced of the Dirac theory of the electron with spin in a mathematical space and the original Dirac theory in the Minkowski space-time. New representations about nature of space, time, rotation, quark-lepton symmetry and confinement will be derived from this consideration.

2 General consideration

The Dirac equation in a mathematical space reads

$$
\begin{equation*}
i \gamma^{\mu} D_{\mu} \psi=m \psi \tag{1}
\end{equation*}
$$

where

$$
D_{\mu}=E_{\mu}^{i} \partial_{i}=E_{\mu}^{1} \frac{\partial}{\partial q^{1}}+E_{\mu}^{2} \frac{\partial}{\partial q^{2}}+E_{\mu}^{3} \frac{\partial}{\partial q^{3}}+E_{\mu}^{4} \frac{\partial}{\partial q^{4}}
$$

and E_{μ}^{i} are quadruplet of linear independent vector fields which will be considered as components of a tetrad field or simply tetrad. The tetrad has sixteen components. The world indices of vectors are denoted by Latin letters $i, j, k, \cdots=1,2,3,4$, and the Greek letters enumerate the vector fields in question $\mu, \nu \cdots=0,1,2,3$. Since

$$
\gamma^{\mu} D_{\mu}=\gamma^{0} D_{0}+\gamma^{1} D_{1}+\gamma^{2} D_{2}+\gamma^{3} D_{3},
$$

then to get a regular transition from a mathematical space to space-time we need to introduce the system of coordinates x^{1}, x^{2}, x^{3}, t in which the linear differential operator D_{0} takes the form

$$
D_{0}=E_{0}^{i} \partial_{i} \rightarrow \frac{\partial}{\partial t}
$$

To this end let us consider the system of ordinary differential equation

$$
\frac{d q^{1}}{d t}=E_{0}^{1}\left(q^{1}, q^{2}, q^{3}, q^{4}\right), \cdots, \frac{d q^{4}}{d t}=E_{0}^{4}\left(q^{1}, q^{2}, q^{3}, q^{4}\right)
$$

It is well known, that this system has unique solution

$$
q^{1}=f_{1}\left(q_{0}^{1}, q_{0}^{2}, q_{0}^{3}, q_{0}^{4}, t\right), \cdots, q^{4}=f_{4}\left(q_{0}^{1}, q_{0}^{2}, q_{0}^{3}, q_{0}^{4}, t\right)
$$

which satisfy the condition

$$
q_{0}^{1}=f_{1}\left(q_{0}^{1}, q_{0}^{2}, q_{0}^{3}, q_{0}^{4}, t_{0}\right), \cdots, q_{0}^{4}=f_{4}\left(q_{0}^{1}, q_{0}^{2}, q_{0}^{3}, q_{0}^{4}, t_{0}\right) .
$$

Let initial point $P\left(q_{0}^{1}, q_{0}^{2}, q_{0}^{3}, q_{0}^{4}\right)$ belongs to the 3 d surface S which is parameterised by the coordinates x^{1}, x^{2}, x^{3}

$$
q_{0}^{1}=h_{1}\left(x^{1}, x^{2}, x^{3}\right), \cdots, q_{0}^{4}=h_{4}\left(x^{1}, x^{2}, x^{3}\right)
$$

The surface S should be chosen such that the variables x^{1}, x^{2}, x^{3}, t define a new system of coordinate in mathematical space and the tetrad take the following form

$$
E_{0}^{i}=(0,0,0,1), \quad E_{1}^{i}=\left(E_{1}^{1}, E_{1}^{2}, E_{1}^{3}, 0\right), \quad E_{2}^{i}=\left(E_{2}^{1}, E_{2}^{2}, E_{2}^{3}, 0\right), \quad E_{3}^{i}=\left(E_{3}^{1}, E_{3}^{2}, E_{3}^{3}, 0\right)
$$

The surface defined in such manner will be called the characteristic surface of space-time, the variables x^{1}, x^{2}, x^{3} will be called space coordinates and correspondingly t time coordinate. The space-time is causal structure on a mathematical space. In the mathematical space equipped by the causal structure the equation (1) take the Hamiltonian form

$$
i \frac{\partial}{\partial t} \psi=H \psi
$$

where operator H does not contain the partial derivative up to t. Now we will concretize this general consideration on the example of a simplest mathematical space that is evidently coordinate space R^{4}.

3 Symmetry and geometrical aspects of the simplest mathematical space

Points of R^{4} have vector

$$
\mathbf{q}=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)
$$

and quaternion representation

$$
q=q_{1} i+q_{2} j+q_{3} k+q_{4} 1
$$

with usual linear structure. The usual rules are

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1, \quad i 1=1 i=i, j 1=1 j=j, k 1=1 k=k, \\
i j=-j i=k, j k=-k j=i, k i=-i k=j .
\end{gathered}
$$

Scalar product

$$
\begin{align*}
& \mathbf{p} \cdot \mathbf{q}=p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}+p_{4} q_{4} \\
& \mathbf{p} \cdot \mathbf{q}=\frac{1}{2}(p \bar{q}+q \bar{p})=\frac{1}{2}(\bar{p} q+\bar{q} p), \tag{2}
\end{align*}
$$

where $\bar{q}=-q_{1} i-q_{2} j-q_{3} k+q_{4} 1$. Scalar product is invariant with respect to the right and left turn dilatation

$$
\begin{equation*}
q \Rightarrow \tilde{q}=s q, \quad \Rightarrow \tilde{q}=q \bar{t} \tag{3}
\end{equation*}
$$

since

$$
\tilde{\mathbf{p}} \cdot \tilde{\mathbf{q}}=s \bar{s}(\mathbf{p} \cdot \mathbf{q}), \quad \tilde{\mathbf{p}} \cdot \tilde{\mathbf{q}}=t \bar{t}(\mathbf{p} \cdot \mathbf{q}) .
$$

We suppose that q and λq, where λ is number are equivalent. For given q equations $q=s q, \quad q=q \bar{t}$ have only trivial solutions $s=\bar{t}=1$ and this is fundamental property of group symmetry of the space in question.

Now we introduce two natural tetrad associated with mathematical space in question. The standard frame

$$
\begin{gathered}
\mathbf{c}_{1}=(1,0,0,0) \quad \mathbf{c}_{2}=(0,1,0,0) \\
\mathbf{c}_{3}=(0,0,1,0) \quad \mathbf{c}_{4}=(0,0,0,1) \\
c_{1}=i, c_{2}=j, c_{3}=k, c_{4}=1
\end{gathered}
$$

gives rise to the pair of right-handled moving frames

$$
\left.\begin{array}{rl}
m_{1}=i q, m_{2}=j q, m_{3} & =k q, m_{4}=1 q, \quad n_{1}=q i, n_{2}=q j, n_{3}=q k, n_{4}=q 1 . \\
\mathbf{m}_{1} & =\left(\begin{array}{cccc}
q_{4}, & -q_{3}, & q_{2}, & -q_{1}
\end{array}\right) \\
\mathbf{m}_{2} & =\left(\begin{array}{cccc}
q_{3}, & q_{4}, & -q_{1}, & -q_{2}
\end{array}\right) \\
\mathbf{m}_{3} & =\left(\begin{array}{cccc}
-q_{2}, & q_{1}, & q_{4}, & -q_{3}
\end{array}\right) \\
\mathbf{m}_{4} & =\left(\begin{array}{cccc}
q_{1}, & q_{2}, & q_{3}, & q_{4}
\end{array}\right) \\
\mathbf{n}_{1} & =\left(\begin{array}{cccc}
q_{4}, & q_{3}, & -q_{2}, & -q_{1}
\end{array}\right) \\
\mathbf{n}_{2} & =\left(\begin{array}{cccc}
-q_{3}, & q_{4}, & q_{1}, & -q_{2}
\end{array}\right) \\
\mathbf{n}_{3} & =\left(\begin{array}{cccc}
q_{2}, & -q_{1}, & q_{4}, & -q_{3}
\end{array}\right) \\
\mathbf{n}_{4} & =\left(\begin{array}{ccc}
q_{1}, & q_{2}, & q_{3},
\end{array} q_{4}\right.
\end{array}\right) .
$$

It is easy to see that

$$
\mathbf{m}_{a} \cdot \mathbf{m}_{b}=q \bar{q} \delta_{a b}, \quad \mathbf{n}_{a} \cdot \mathbf{n}_{b}=q \bar{q} \delta_{a b}, \quad(a, b=1,2,3,4) .
$$

Let us consider the support point $T\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$, and the twelve coherent points

$$
\begin{array}{rll}
A\left(q_{4},-q_{3}, q_{2},-q_{1}\right), & B\left(q_{3}, q_{4},-q_{1},-q_{2}\right), & C\left(-q_{2}, q_{1}, q_{4},-q_{3}\right), \\
K\left(q_{4}, q_{3},-q_{2},-q_{1}\right), & L\left(-q_{3}, q_{4}, q_{1},-q_{2}\right), & M\left(q_{2},-q_{1}, q_{4},-q_{3}\right), \\
\bar{A}\left(-q_{4}, q_{3},-q_{2}, q_{1}\right), & \bar{B}\left(-q_{3},-q_{4}, q_{1}, q_{2}\right), & \bar{C}\left(q_{2},-q_{1},-q_{4}, q_{3}\right), \\
\bar{K}\left(-q_{4},-q_{3}, q_{2}, q_{1}\right), & \bar{L}\left(q_{3},-q_{4},-q_{1}, q_{2}\right), & \bar{M}\left(-q_{2}, q_{1},-q_{4}, q_{3}\right) .
\end{array}
$$

It is easy to see that

$$
\begin{aligned}
& d_{A B}^{2}=d_{A C}^{2}=d_{B C}^{2}=d_{T A}^{2}=d_{T B}^{2}=d_{T C}^{2}=2 q \bar{q} \\
& d_{\bar{A} \bar{B}}^{2}=d_{\bar{A} \bar{C}}^{2}=d_{\bar{B} \bar{C}}^{2}=d_{T \bar{A}}^{2}=d_{T \bar{B}}^{2}=d_{T \bar{C}}^{2}=2 q \bar{q}
\end{aligned}
$$

, and,

$$
\begin{aligned}
& d_{K L}^{2}=d_{K M}^{2}=d_{L M}^{2}=d_{T K}^{2}=d_{T L}^{2}=d_{T M}^{2}=2 q \bar{q}, \\
& d_{\bar{K} \bar{L}}^{2}=d_{\bar{K} \bar{M}}^{2}=d_{\bar{L} \bar{M}}^{2}=d_{T \bar{K}}^{2}=d_{T \bar{L}}^{2}=d_{T \bar{M}}^{2}=2 q \bar{q},
\end{aligned}
$$

where $d_{A B}$ is distance between the points A and B. We see pair of tetrahedrons and mirror one with common top $T: T A B C$ and $T K L M, T \bar{A} \bar{B} \bar{C}$ and $T \bar{K} \bar{L} \bar{M}$. These tetrahedron give visual representation of frames in question $\mathbf{m}_{\mu} \mathbf{n}_{\mu}$, and $-\mathbf{m}_{\mu}-\mathbf{n}_{\mu}, \quad(\mu=1,2,3)$.

Let $\mathbf{q}=\mathbf{q}(t)$ is trajectory in R^{4}. When point T moves along this trajectory the tetrahedrons $T A B C$ and $T K L M$ are pulsed and rotated with respect to each other. And the same for the mirror tetrahedrons $T \bar{A} \bar{B} \bar{C} \quad T \bar{K} \bar{L} \bar{M}$.

The matrix of scalar products

$$
\mathbf{P}_{\mu \nu}=\mathbf{m}_{\mu} \cdot \mathbf{n}_{\nu}, \quad(\mu, \nu=1,2,3)
$$

describes this movement.
The scalar products of tangent vector $\dot{\mathbf{q}}=d \mathbf{q} / d t$ with vectors of dual frames \mathbf{m}_{a} $\mathbf{n}_{a},(a=1,2,3,4)$

$$
\begin{gathered}
\mathbf{m}_{1} \cdot \frac{d \mathbf{q}}{d t}=q_{4} \frac{d q_{1}}{d t}-q_{3} \frac{d q_{2}}{d t}+q_{2} \frac{d q_{3}}{d t}-q_{1} \frac{d q_{4}}{d t} \\
\mathbf{m}_{2} \cdot \frac{d \mathbf{q}}{d t}=q_{3} \frac{d q_{1}}{d t}+q_{4} \frac{d q_{2}}{d t}-q_{1} \frac{d q_{3}}{d t}-q_{2} \frac{d q_{4}}{d t}, \\
\mathbf{m}_{3} \cdot \frac{d \mathbf{q}}{d t}=-q_{2} \frac{d q_{1}}{d t}+q_{1} \frac{d q_{2}}{d t}+q_{4} \frac{d q_{3}}{d t}-q_{3} \frac{d q_{4}}{d t}, \\
\mathbf{n}_{1} \cdot \frac{d \mathbf{q}}{d t}=q_{4} \frac{d q_{1}}{d t}+q_{3} \frac{d q_{2}}{d t}-q_{2} \frac{d q_{3}}{d t}-q_{1} \frac{d q_{4}}{d t}, \\
\mathbf{n}_{2} \cdot \frac{d \mathbf{q}}{d t}=-q_{3} \frac{d q_{1}}{d t}+q_{4} \frac{d q_{2}}{d t}+q_{1} \frac{d q_{3}}{d t}-q_{2} \frac{d q_{4}}{d t}, \\
\mathbf{n}_{3} \cdot \frac{d \mathbf{q}}{d t}=q_{2} \frac{d q_{1}}{d t}-q_{1} \frac{d q_{2}}{d t}+q_{4} \frac{d q_{3}}{d t}-q_{3} \frac{d q_{4}}{d t}, \\
\mathbf{m}_{4} \cdot \frac{d \mathbf{q}}{d t}=\mathbf{n}_{4} \cdot \frac{d \mathbf{q}}{d t}=q_{1} \frac{d q_{1}}{d t}+q_{2} \frac{d q_{2}}{d t}+q_{3} \frac{d q_{3}}{d t}+q_{4} \frac{d q_{4}}{d t}
\end{gathered}
$$

are invariant with respect to left and right turn dilatations. Invariants

$$
\Omega_{\mu}=\frac{1}{2} \mathbf{m}_{\mu} \cdot \frac{d \mathbf{q}}{d t}, \quad \tilde{\Omega}_{\mu}=\frac{1}{2} \mathbf{n}_{\mu} \cdot \frac{d \mathbf{q}}{d t}, \quad(\mu=1,2,3)
$$

are components of angular velocity of rotation of tetrahedron $T A B C$ with respect to tetrahedron $T K L M$. In the theory of rigid body Ω_{μ} and $\tilde{\Omega}_{\mu}$.

To quantize this theory we introduce the $4 d$ operator ∇

$$
\nabla_{4}=\left(\frac{\partial}{\partial q_{1}}, \frac{\partial}{\partial q_{2}}, \frac{\partial}{\partial q_{3}}, \frac{\partial}{\partial q_{4}}\right)
$$

and setting

$$
M_{\nu}=\frac{1}{2}\left(\mathbf{m}_{\nu} \cdot \nabla_{4}\right), \quad N_{\nu}=\frac{1}{2}\left(\mathbf{n}_{\nu} \cdot \nabla_{4}\right), \quad(\nu=1,2,3)
$$

do get six antihermitian operators of angular momentum. Factor $\frac{1}{2}$ is essential since natural commutation relations hold valid

$$
M_{1} M_{2}-M_{2} M_{1}=M_{3}, \quad N_{1} N_{2}-N_{2} N_{1}=-N_{3}
$$

and so on. Operator of dilatations

$$
D=\left(\mathbf{m}_{4} \cdot \nabla_{4}\right)=q_{1} \frac{\partial}{\partial q_{1}}+q_{2} \frac{\partial}{\partial q_{2}}+q_{3} \frac{\partial}{\partial q_{3}}+q_{4} \frac{\partial}{\partial q_{4}}
$$

have important meaning as well since it commutes with the operators of angular momentum

$$
D M_{\nu}-M_{\nu} D=0, \quad D N_{\nu}-N_{\nu} D=0, \quad(\nu=1,2,3)
$$

Now we shall introduce two natural tetrad associated with the mathematical space in question and consider the different form of transition from mathematical space to spacetime.

4 Global tetrad

Let

$$
\vec{a}=\left(a^{1}, a^{2}, a^{3}, a^{4}\right)
$$

be a constant unit vector, then a global tetrad in R^{4} is defined as follows

$$
\begin{gathered}
\vec{E}_{0}=\left(a^{1}, a^{2}, a^{3}, a^{4}\right), \quad \vec{E}_{1}=\left(-a^{4},-a^{3}, a^{2}, a^{1}\right) \\
\vec{E}_{2}=\left(a^{3},-a^{4},-a^{1}, a^{2}\right), \quad \vec{E}_{3}=\left(-a^{2}, a^{1},-a^{4}, a^{3}\right) .
\end{gathered}
$$

We put

$$
D_{0}=\vec{E}_{0} \cdot \vec{\nabla}, \quad D_{1}=\vec{E}_{1} \cdot \vec{\nabla}, \quad D_{2}=\vec{E}_{2} \cdot \vec{\nabla}, \quad D_{3}=\vec{E}_{3} \cdot \vec{\nabla}
$$

where

$$
\vec{\nabla}=\left(\frac{\partial}{\partial q^{1}}, \frac{\partial}{\partial q^{2}}, \frac{\partial}{\partial q^{3}}, \frac{\partial}{\partial q^{4}}\right)
$$

then the Dirac equation in the mathematical space R^{4} reads

$$
i \gamma^{\mu} D_{\mu} \psi=\frac{m c}{\hbar} \psi
$$

In accordance with general prescription let us consider the transition to space- time. First of all we need to solve the system of equation

$$
\frac{d q^{i}}{d t}=a^{i}
$$

The general solution is a straight line that goes through the fixed point $\overrightarrow{q_{0}}$:

$$
\begin{equation*}
\vec{q}(t)=\vec{a}\left(t-t_{0}\right)+\vec{q}_{0} . \tag{4}
\end{equation*}
$$

The 3d surface S in the space of initial data we define as follows

$$
\begin{equation*}
\vec{a} \cdot \vec{q}_{0}=t_{0} \tag{5}
\end{equation*}
$$

The general solution to equation (5) has the form

$$
\vec{q}_{0}=t_{0} \vec{E}_{0}+x \vec{E}_{1}+y \vec{E}_{2}+z \vec{E}_{3}
$$

Substituting this representation into formula (4) we get

$$
\vec{q}=t \vec{E}_{0}+x \vec{E}_{1}+y \vec{E}_{2}+z \vec{E}_{3}
$$

The Dirac equation in the coordinates t, x, y, z has a ordinary form

$$
i\left(\gamma^{0} \frac{\partial}{\partial t}+\gamma^{1} \frac{\partial}{\partial x}+\gamma^{2} \frac{\partial}{\partial y}+\gamma^{3} \frac{\partial}{\partial z}\right) \psi=\frac{m c}{\hbar} \psi
$$

One can work in either the coordinates $q^{1}, q^{2}, q^{3}, q^{4}$ or in the coordinates t, x, y, z, but in the first case the physical results should not depend on the choice of the constant vector \vec{a}.

Now it is important to show how the transition from mathematical space in question to space-time is connected with notion of interval. The interval in the M^{4} defined as follows. Let

$$
\vec{q}_{s}=2 \vec{a}(\vec{a} \cdot \vec{q})-\vec{q}
$$

be the vector symmetrical \vec{q} with respect to the vector \vec{a}. Then in the coordinates $q^{1}, q^{2}, q^{3}, q^{4}$ the interval can be presented as follows:

$$
s^{2}=\vec{q} \cdot \vec{q}_{s}=2(\vec{a} \cdot \vec{q})^{2}-\vec{q} \cdot \vec{q}=-d(\vec{q} \cdot \vec{q}) \cos 2 \theta=-q \cos 2 \theta
$$

where θ is an angle between \vec{a} and \vec{q}. It is easy to see that in the coordinates t, x, y, z,

$$
s^{2}=t^{2}-x^{2}-y^{2}-z^{2}
$$

We see that the existence of natural global tetrad in the mathematical space presuppose the existence of Minkowski space-time.

5 Local tetrad

Let

$$
\vec{q}=\left(q^{1}, q^{2}, q^{3}, q^{4}\right)
$$

be a radius- vector, then a local tetrad in R^{4} be the four orthogonal unit vector fields

$$
\begin{gathered}
\vec{E}_{0}=\left(\frac{q^{1}}{\tau}, \frac{q^{2}}{\tau}, \frac{q^{3}}{\tau}, \frac{q^{4}}{\tau}\right), \quad \vec{E}_{1}=\left(\frac{-q^{4}}{\tau}, \frac{-q^{3}}{\tau}, \frac{q^{2}}{\tau}, \frac{q^{1}}{\tau}\right), \\
\vec{E}_{2}=\left(\frac{q^{3}}{\tau}, \frac{-q^{4}}{\tau}, \frac{-q^{1}}{\tau}, \frac{q^{2}}{\tau}\right), \quad \vec{E}_{3}=\left(\frac{-q^{2}}{\tau}, \frac{q^{1}}{\tau}, \frac{-q^{4}}{\tau}, \frac{q^{3}}{\tau}\right),
\end{gathered}
$$

where

$$
\tau=\sqrt{(\vec{q} \cdot \vec{q})}=\sqrt{\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}+\left(q^{3}\right)^{2}+\left(q^{4}\right)^{2}}
$$

We again put

$$
D_{0}=\vec{E}_{0} \cdot \vec{\nabla}, \quad D_{1}=\vec{E}_{1} \cdot \vec{\nabla}, \quad D_{2}=\vec{E}_{2} \cdot \vec{\nabla}, \quad D_{3}=\vec{E}_{3} \cdot \vec{\nabla}
$$

where

$$
\vec{\nabla}=\left(\frac{\partial}{\partial q^{1}}, \frac{\partial}{\partial q^{2}}, \frac{\partial}{\partial q^{3}}, \frac{\partial}{\partial q^{4}}\right)
$$

and the Dirac equation of rotating matter has the form

$$
\begin{equation*}
i \gamma^{\mu} D_{\mu} \psi=\frac{m c}{\hbar} \psi \tag{6}
\end{equation*}
$$

Let us consider the transition from the mathematical space to space-time in this case. The general solution of the system of equations

$$
\frac{d q^{i}}{d \tau}=\frac{u^{i}}{\sqrt{\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}+\left(u^{3}\right)^{2}+\left(u^{4}\right)^{2}}}
$$

can be written as follows

$$
q^{i}(\tau)=q_{0}^{i} \frac{\tau}{\tau_{0}}
$$

. The 3d surface S in the space of initial data we define as follows

$$
\vec{q}_{0} \cdot \vec{q}_{0}=\tau_{0}^{2}
$$

This surface can be parameterized by the Euler angles, $\theta, \varphi, \gamma \operatorname{In}$ the coordinates $\tau, \theta, \varphi, \gamma$, θ, φ, γ we have

$$
\begin{aligned}
D_{0} & =\frac{\partial}{\partial \tau}, \quad D_{1}=\frac{1}{\tau}\left(-\cot \theta \cos \gamma \frac{\partial}{\partial \gamma}-\sin \gamma \frac{\partial}{\partial \theta}+\frac{\cos \gamma}{\sin \theta} \frac{\partial}{\partial \varphi}\right) \\
D_{2} & =\frac{1}{\tau}\left(-\cot \theta \sin \gamma \frac{\partial}{\partial \gamma}+\cos \gamma \frac{\partial}{\partial \theta}+\frac{\sin \gamma}{\sin \theta} \frac{\partial}{\partial \varphi}\right), \quad D_{3}=\frac{1}{\tau} \frac{\partial}{\partial \gamma} .
\end{aligned}
$$

The action for the point particle accosted with rotating can be written in the following form

$$
S=-m c \int_{p}^{q} \sqrt{1-\tau^{2} \omega^{2}} d \tau
$$

where $\omega=d l / d \tau$ and $d l$ is the element of arc on the unit $3 d$ sphere. Really, $\overrightarrow{d u} \cdot \overrightarrow{d u}=$ $d \tau^{2}+\tau^{2} d l^{2}$, and $\vec{u} \cdot \overrightarrow{d u}=\tau d \tau$. On this ground we can develop the classical mechanics in new framework.

6 Local tetrad and Maxwell equation

Now we formulate the Maxwell equations in the framework of the new causal structure. Let A_{i} be the vector potential of the electromagnetic field. Let us define the gauge invariant tensor of electromagnetic field as usual $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$. Strength of the electric field is a general covariant and gauge invariant quantity that is defined by the equation $E_{i}=t^{k} F_{i k}$, where in our case $t^{k}=t_{k}=q^{k} / \tau$.

A rotor of the vector field \vec{A} is defined as a vector product of $\vec{\nabla}$ and \vec{A}

$$
\operatorname{rot} \vec{A}=\vec{\nabla} \times \vec{A}, \quad(\operatorname{rot} \vec{A})^{i}=e^{i j k l} t_{j} \partial_{k} A_{l}=\frac{1}{2} e^{i j k l} t_{j}\left(\partial_{k} A_{l}-\partial_{l} A_{k}\right)
$$

where $e^{i j k l}$ are contravariant components of the Levi-Chivita tensor normalized as $e_{1234}=$ $\sqrt{g}=1$. The general covariant and gauge invariant definition of the magnetic field strength is given by the formula $\vec{H}=\operatorname{rot} \vec{A}, \quad H^{i}=(\operatorname{rot} \vec{A})^{i}$. Thus, $H_{i}=t^{k} \stackrel{*}{F}_{i k}$, where $\stackrel{*}{F}_{i j}=$ $g_{i k} g_{j l}{ }^{*}{ }^{k l}$. It is evident that vectors \vec{E} and \vec{H} are orthogonal to \vec{q}

$$
\vec{q} \cdot \vec{E}=0, \quad \vec{u} \cdot \vec{H}=0
$$

Here we write the Maxwell equations in the form that is suitable for its solution:

$$
\begin{gather*}
\left(\vec{D}_{0} \cdot \vec{\nabla}\right) \vec{H}+\frac{2}{\tau} \vec{H}=-\operatorname{rot} \vec{E}, \tag{7}\\
\left(\vec{D}_{0} \cdot \vec{\nabla}\right) \vec{E}+\frac{2}{\tau} \vec{E}=-\operatorname{rot} \vec{H}+q \vec{J}, \tag{8}\\
\vec{\nabla} \cdot \vec{E}=e \bar{\psi} \gamma^{0} \psi, \quad \vec{\nabla} \cdot \vec{H}=0, \tag{9}
\end{gather*}
$$

where a current \vec{J} is given by the expression

$$
\vec{J}=\vec{D}_{1} \bar{\psi} \gamma^{1} \psi+\vec{D}_{2} \bar{\psi} \gamma^{2} \psi+\vec{D}_{3} \bar{\psi} \gamma^{3} \psi .
$$

7 Conclusion

Thus, it is shown that on the simplest mathematical space two space-time can be defined. In one case the characteristic surface of space-time represents the 3 d plane and congruence of curves is set of parallel straight lines. In another case the characteristic surface is 3 d sphere and the congruence of curves is set of rays orthogonal to the 3d sphere. A physical interpretation: the behavior of leptons are defined by the Minkowski space-time and the physics of quarks is tightly connected with new space-time which represents rotating matter. Confinement is new causal structure

