Proton Form Factors

in space-like and time-like regions

Egle Tomasi-Gustafsson ${ }^{1}$, Rinaldo Baldini Ferroli ${ }^{2}$ and Simone Pacetti ${ }^{3}$
${ }^{1}$ IRFU, SPhN-Saclay and IN2P3-IPN, Orsay, France
${ }^{3}$ Department of Physics and INFN, Perugia, Italy
${ }^{3}$ Laboratori Nazionali di Frascati of INFN, Frascati, Italy

XXII International Baldin Seminar on High Energy Physics Problems

Relativistic Nuclear Physics and Quantum Chromodynamics

September $15^{\text {th }}-20^{\text {th }}, 2014$, Dubna, Russia

Agenda

- Nucleon Electromagnetic Form Factors
- Definition and properties
- The space-like region
- Proton radius
- Rosenbluth versus polarization
- The time-like region

Unphysical region

- Threshold
- The asymptotic region
* An interesting model
- Conclusions

Proton electromagnetic form factors

Nobel Prize in Physics - 1961
Prize motivation: "for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons".

Robert Hofstadter

Stanford University Stanford, CA, USA

Form factors. . .Characterize the internal structure of a particle ($F_{\text {point-like }}=$ const.).Elastic form factors contain information on the hadron ground state.In a parity and T-invariant theory, the electromagnetic structure of a particle of spin $S \hbar$ is defined by $2 S+1$ form factors.Neutron and proton form factors are different.The deuteron has two structure functions, but three form factors.Playground for theory and experiment:
at low q^{2} probe the size of the nucleons;

- at high q^{2} test QCD scaling.

Dirac and Pauli Form Factors

Scattering: $\boldsymbol{e}^{-\boldsymbol{N}} \rightarrow \boldsymbol{e}^{-\boldsymbol{N}}$
Space-like kinematic region

$$
q^{2}=-2 \omega_{1} \omega_{2}\left(1-\cos \theta_{e}\right) \leq 0
$$

Annihilation: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \leftrightarrow \boldsymbol{N} \bar{N}$
Time-like kinematic region

$$
q^{2}=4 \omega^{2}>0
$$

Scattering amplitude in Born approximation

$$
\mathcal{M}=\frac{\mathbf{1}}{\boldsymbol{q}^{2}}\left[\boldsymbol{e} \overline{\boldsymbol{u}}\left(\boldsymbol{k}_{2}\right) \gamma_{\mu} \boldsymbol{u}\left(\boldsymbol{k}_{1}\right)\right] \underbrace{\left[e \bar{U}\left(p_{2}\right) \Gamma^{\mu}\left(p_{1}, p_{2}\right) U\left(p_{1}\right)\right]}_{\text {Nucleon EM 4-current: } \boldsymbol{J}_{N}^{\mu}}
$$

From Lorenz and gauge invariance

$$
\Gamma^{\mu}\left(p_{1}, p_{2}\right)=\gamma^{\mu} F_{1}^{N}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{N}} F_{2}^{N}\left(q^{2}\right)
$$

© Dirac FF: $F_{1}^{N}\left(q^{2}\right), F_{1}^{N}(0)=\mathcal{Q}_{N}$
Pauli FF: $F_{2}^{N}\left(q^{2}\right), F_{2}^{N}(0)=\kappa_{N}$
$\mathcal{Q}_{N}=N$ electric charge
$\kappa_{\boldsymbol{N}}=N$ anomalous magnetic moment

Sachs Form Factors

Breit frame

No energy exchanged
$p_{1}=(E,-\vec{q} / 2)$
$p_{2}=(E, \vec{q} / 2)$
$q=(0, \vec{q})$

Nucleon elecrtomagnetic four-current

$$
J_{N}^{\mu}=\left(J_{N}^{0}, \vec{J}_{N}\right) \quad\left\{\begin{array}{l}
\rho_{q}=J_{N}^{0}=e\left[F_{1}^{N}+\frac{q^{2}}{4 M_{N}^{2}} F_{2}^{N}\right] \\
\vec{J}_{N}=e \bar{U}\left(p_{2}\right) \vec{\gamma} \boldsymbol{U}\left(p_{1}\right)\left[F_{1}^{N}+F_{2}^{N}\right]
\end{array}\right.
$$

Sachs Nucleon Form Factors

$$
G_{M}^{N}\left(q^{2}\right)=F_{1}^{N}\left(q^{2}\right)+F_{2}^{N}\left(q^{2}\right) \quad G_{E}^{N}\left(q^{2}\right)=F_{1}^{N}\left(q^{2}\right)+\frac{q^{2}}{4 M_{N}^{2}} F_{2}^{N}\left(q^{2}\right)
$$

In the Breit frame represent the Fourier transforms of charge and magnetic moment spatial distributions of the nucleon

Normalization at $q^{2}=0$

- $G_{E}^{N}(0)=\mathcal{Q}_{N}$
- $G_{M}^{N}(0)=\mu_{N}$

$$
\mu_{N}=\mathcal{Q}_{N}+\kappa_{N}
$$

is the nucleon magnetic moment

Cross sections and analyticity

$\underline{q^{2} \text {-complex plane }}$

Crossing: tot. helicity $=\left\{\begin{array}{l}1 \Rightarrow G_{E} \\ 0 \Rightarrow G_{M}\end{array}\right\} \quad G_{E}\left(4 M_{N}^{2}\right)=G_{M}\left(4 M_{N}^{2}\right)$

Elastic scattering

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \omega_{2} \cos ^{2} \frac{\theta_{e}}{2}}{4 \omega_{1}^{3} \sin ^{4} \frac{\theta_{e}}{2}}\left[G_{E}^{2}-\tau\left(1+2(1-\tau) \tan ^{2} \frac{\theta_{e}}{2}\right) G_{M}^{2}\right] \frac{1}{1-\tau} \tau=\frac{q^{2}}{4 M_{N}^{2}}
$$

Annihilation

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]
$$

$$
\beta=\sqrt{1-\frac{1}{\tau}}
$$

The proton radius

The proton radius

The proton radius

$$
G_{E}^{p}\left(q^{2}\right)=\int d^{3} \vec{r} \rho(r) e^{i \vec{q} \cdot \vec{r}}=1+\frac{1}{6} q^{2}\left\langle r_{c}^{2}\right\rangle+\mathcal{O}\left(q^{4}\right)
$$

$\rho(r)$: normalized spherical charge density
The charge radius

$$
r_{E}=\sqrt{\left\langle r_{C}^{2}\right\rangle}=\sqrt{4 \pi \int_{0}^{\infty} r^{4} \rho(r) d r}=\left.\sqrt{\frac{6}{Q_{E}^{p}} 0} \frac{d Q_{E}^{p}}{d q^{2}}\right|_{q^{2}} ^{0}=0
$$

Charge density

$$
\rho(r)
$$

$$
\delta^{3}(r)
$$

$$
e^{-\lambda r}
$$

$$
e^{-\lambda r} / r
$$

$$
e^{-\lambda r^{2}} / r^{2}
$$

Form factor $G_{E}^{p}\left(q^{2}\right)$

Charge radius r_{E} 0

$$
\lambda^{4} /\left(q^{2}+\lambda^{2}\right)^{2}
$$

$$
\lambda^{2} /\left(q^{2}+\lambda^{2}\right) \quad \sqrt{6} / \lambda
$$

$$
1 / \sqrt{2 \lambda}
$$

Comments pointlike dipole monopole
gaussian

The proton radius

A1 Collaboration [arXiv:1307.6227]

$$
\text { © } \sim 1400 \text { points } \quad-q^{2} \geq 0.003 \mathrm{GeV}^{2}
$$

The proton radius

Ongoing discussions...

- Radiative corrections
- Two-photon exchange
- Coulomb corrections

A1 Collaboration [arXiv:1307.6227]

$$
\text { © } \sim 1400 \text { points } \quad-q^{2} \geq 0.003 \mathrm{GeV}^{2}
$$

Extrapolating $q^{2} \rightarrow 0^{-}$
DR: $r_{E}^{2}=\frac{12 M_{\pi}^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\ln \left|G_{E}^{p}(t) / G_{E}^{p}(0)\right|}{t^{2} \sqrt{t-4 M_{\pi}^{2}}} d t$

Rosenbluth formula

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }} \frac{1}{1-\tau}\left[G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}\right] \quad \tau=\frac{q^{2}}{4 M_{N}^{2}}
$$

- Mott pointlike cross section

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}=\frac{4 \alpha^{2}}{\left(-q^{2}\right)^{2}} \frac{E_{2}^{3}}{E_{1}} \cos ^{2}\left(\theta_{e} / 2\right)
$$

- Photon polarization

$$
\epsilon=\left[1+2(1-\tau) \tan ^{2}\left(\theta_{e} / 2\right)\right]^{-1}
$$

G_{E}^{p} and G_{M}^{p} with Rosenbluth separation

$$
\text { Dipole approximation } \quad G_{D}\left(q^{2}\right)=\left(1-q^{2} / M_{D}^{2}\right)^{-2} \quad M_{D}^{2}=0.71 \mathrm{GeV}^{2}
$$

Classical approach

Form factors, in nonrelativistic approximation, are Fourier transforms of charge and magnetic distributions

The dipole form factor corresponds to an exponential distribution

$$
\rho(r)=\rho_{0} e^{-r / r_{0}}
$$

$$
M_{D}^{2}=0.71 \mathrm{GeV}^{2} \Longrightarrow\left\{\begin{aligned}
r_{0}^{2} & =(0.24 \mathrm{fm})^{2} \\
\left\langle r^{2}\right\rangle & =(0.81 \mathrm{fm})^{2}
\end{aligned}\right.
$$

Dipole approximation and pQCD

Lett. Nuovo Cim. 7 (1973) 719
Phys. Rev. Lett. 31 (1973) 1153 JETP Lett. 96 (2012) 6-12

Hadron form factor

$F\left(q^{2}\right)=\frac{C_{n}}{\left(1-q^{2} / M_{n}^{2}\right)^{n-1}}$
$M_{n}^{2}=n \beta^{2}$
© $\beta^{2}=$ quark momentum squared
en= number of constituent quarks

Dimensional scaling

$$
F_{\pi}\left(q^{2}\right)=\frac{C_{2}}{1-\frac{q^{2}}{0.471 \mathrm{GeV}^{2}}} \ldots \ldots \ldots \text {. pion, } n=2
$$

Pion form factor
\downarrow
$\beta^{2}=(0.471 \pm 0.010) \mathrm{GeV}^{2}$

$$
F_{N}\left(q^{2}\right)=\frac{C_{3}}{\left(1-\frac{q^{2}}{0.71 \mathrm{GeV}^{2}}\right)^{2}} \ldots \text { nucleon, } n=3
$$

$$
F_{d}\left(q^{2}\right)=\frac{C_{6}}{\left(1-\frac{q^{2}}{1.42 \mathrm{GeV}^{2}}\right)^{5}} \text {. deuteron, } n=6
$$

Polarization observables

A.I. Akhiezer, M.P. Rekalo, Sov. Phys. Dokl. 13, 572 (1968)

5. Elastic scattering of longitudinally polarized $(h= \pm 1)$ electrons on nucleon target
(3) Hadronic tensor: $W_{\mu \nu}=\underbrace{W_{\mu \nu}(0)}+\underbrace{W_{\mu \nu}(\vec{P})+W_{\mu \nu}\left(\vec{P}^{\prime}\right)}+\underbrace{W_{\mu \nu}\left(\vec{P}, \vec{P}^{\prime}\right)}$ no pol. ini. or fin. pol. of N ini. and fin. pol. of N
(3) In case of polarized $(h= \pm 1)$ electrons on unpolarized nucleon target:

$$
P_{x}^{\prime}=-\frac{2 \sqrt{\tau(\tau-1)}}{G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}} G_{E} G_{M} \tan \left(\frac{\theta_{e}}{2}\right) \quad \left\lvert\, \quad P_{z}^{\prime}=\frac{\left(E_{e}+E_{e}^{\prime}\right) \sqrt{\tau(\tau-1)}}{M\left(G_{E}^{2}-\frac{\tau}{\epsilon} G_{M}^{2}\right)} G_{M}^{2} \tan ^{2}\left(\frac{\theta_{e}}{2}\right)\right.
$$

$$
\frac{P_{X}^{\prime}}{P_{z}^{\prime}}=-\frac{2 M \cot \left(\theta_{e} / 2\right)}{E_{e}+E_{e}^{\prime}} \frac{G_{E}}{G_{M}}
$$

G_{E}^{p} / G_{M}^{p} in polarization transfer experiments

"Standard" dipole for the proton magnetic form factors G_{M}^{p}

Linear deviation from the dipole for the electric proton form factor G_{E}^{p}

QCD scaling still not reached

Zero crossing for G_{E}^{p}

Polarization data do not agree with old Rosenbluth data (\diamond)

New Rosenbluth separation data from JLab still do not agree with polarization data

The time-like region

The time-like region

Differential cross section $e^{+} e^{-} \rightarrow p \bar{p}$
A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto [NC XXIV (1962) 170]

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}^{p}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}^{p}\right|^{2}\right]
$$

Optical theorem
$\left.\operatorname{Im}\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| j^{\mu}|0\rangle \sim \sum_{n} \bar{N}\left(p^{\prime}\right) N(p)\left|j^{\mu}\right| n\right\rangle\langle n| j^{\mu}|0\rangle$
$|n\rangle$ are on-shell intermediate states: $2 \pi, 3 \pi, 4 \pi, \ldots$

time
 Form factors are complex for $q^{2}>4 M_{\pi}^{2}$

The cross section is an even function of $\cos \theta$

- The cross section does not depend on the form factor phases
- At high q^{2} the $\left|G_{E}^{p}\right|^{2}$ contribution is suppressed

The unphysical region is not accessible through the annihilations $e^{+} e^{-} \leftrightarrow p \bar{p}$

Proton effective form factor

- No individual determination of $\left|G_{E}^{p}\right|$ and $\left|G_{M}^{p}\right|$.
- Time-like proton form factors are larger (factor of two) than their space-like values at the same $\left|q^{2}\right|$.

The threshold behavior is very steep.
It is not smooth. Structures? Resonances?...

Initial State Radiation

$$
\begin{aligned}
& \bullet \frac{d^{2} \sigma}{d E_{\gamma} d \cos \theta_{\gamma}}=W\left(E_{\gamma} \theta_{\gamma}\right) \sigma_{e^{+} e^{-} \rightarrow x_{\text {nad }}}(s) \\
& \in w\left(E_{\gamma}, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right)
\end{aligned}
$$

© $s=\boldsymbol{q}^{2}, \boldsymbol{q} \ldots \ldots . X_{\text {had }}$ momentum
© $E_{\gamma}, \boldsymbol{\theta}_{\gamma}$. . CM $\gamma_{\text {ss }}$ energy, scatt. ang.
© $E_{\mathrm{CM}} \ldots \ldots \ldots \ldots . . \mathrm{CM}^{+} \boldsymbol{e}^{-}$energy
© $\boldsymbol{x}=2 E_{\gamma} / E_{\mathrm{cm}}$

- All energies $\left(q^{2}\right)$ at the same time \Rightarrow

Better control on systematics (greatly reduced point to point)

- Detected ISR at large angles \Rightarrow full $X_{\text {had }}$ angular coverage
- CM boost $\Rightarrow\left\{\begin{array}{l}\text { efficiency at threshold } \neq 0 \\ \text { energy resolution } \sim 1 \mathrm{MeV}\end{array}\right.$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p}$ angular distribution (BABAR)

$\cos \theta_{p}$ distributions form threshold up to 3 GeV [intervals in $\left.E_{C M} \equiv \sqrt{\boldsymbol{q}^{2}}(\mathrm{GeV})\right]$

Events/0.2 vs. $\cos \theta_{p}$
H_{E} and H_{M} from MC

At higher $q^{2}, \quad\left|G_{E}^{p}\right| \rightarrow\left|G_{m}^{p}\right|$

Time-like $\left|G_{E}^{p} / G_{M}^{p}\right|$ measurements

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2} \beta C}{2 q^{2}}\left|G_{M}^{p}\right|^{2}\left[\left(1+\cos ^{2} \theta\right)+\frac{4 M_{p}^{2}}{q^{2}} \sin ^{2} \theta\left|\frac{G_{E}^{p}}{G_{M}^{p}}\right|^{2}\right]
$$

18

$\gamma \gamma$ exchange from $e^{+} e^{-} \rightarrow p \bar{p} \gamma$ BABAR 2013 data

Integrated over the $p \bar{p}$-CM energy from threshold up to 3 GeV

The MC-fit assumes one-photon exchange

Slope $=-0.041 \pm 0.026 \pm 0.005$

Integral asymmetry

$$
\begin{gathered}
\langle\mathcal{A}\rangle_{\cos \theta_{p}}=\frac{\sigma\left(\cos \theta_{p}>0\right)-\sigma\left(\cos \theta_{p}<0\right)}{\sigma\left(\cos \theta_{p}>0\right)+\sigma\left(\cos \theta_{p}<0\right)}=-0.025 \pm 0.014 \pm 0.003 \\
\sigma\left(\cos \theta_{p} \gtrless 0\right) \text { is the cross section integrated with } \sqrt{q^{2}} \leq 3 \mathrm{GeV} \text { and } \cos \theta_{p} \gtrless 0
\end{gathered}
$$

The unphysical region

The unphysical region

The unphysical region

Unphysical region goes from $q^{2}=0$ up to the physical threshold $q^{2}=4 M_{p}^{2}$

In that region, form factors
e are still well defined but not (directly) experimentally accessible
© are complex and, following VMD-based models, receive their main contribution from intermediate resonances

Handling the unphysical region 1

Model dependent disclosing [Höler, Mergell, Meissner, Hammer]

Optical theorem $\ldots \ldots \ldots \ldots \ldots . \operatorname{lm}\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| j^{\mu}|0\rangle \sim \sum_{n}\left\langle\bar{N}\left(p^{\prime}\right) N(p)\right| j^{\mu}|n\rangle\langle n| j^{\mu}|0\rangle$
Dispersion relations for the imaginary part $\ldots \ldots . F\left(q_{S L}^{2}\right)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{lm} F\left(q_{T L}^{2}\right)}{q_{T L}^{2}-q_{S L}^{2}} d q_{T \mathrm{~L}}^{2}$

2π and $2 K$ continua are known

- The ρ resonance with finite width

Dirac delta poles for higher mass states

- Super convergence relations

$$
\begin{aligned}
& \int_{4 M_{\pi}^{2}}^{\infty} \operatorname{Im} F_{1,2}\left(q^{2}\right) d q^{2}=0 \\
& \int_{4 M_{\pi}^{2}}^{\infty} q^{2} \operatorname{Im} F_{2}\left(q^{2}\right) d q^{2}=0
\end{aligned}
$$

e. Asymptotic behaviors from perturbative QCD

Handling the unphysical region 2

Model independent disclosing [EPJC11 709]

$$
\begin{aligned}
& \text { Dispersion relation subtracted at } \boldsymbol{t}=\mathbf{0} \\
& \ln G(t)=\frac{t \sqrt{4 M_{\pi}^{2}-t}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\ln |G(s)| d s}{s \sqrt{s-4 M_{\pi}^{2}}(s-t)}
\end{aligned}
$$

- Less dependent on the asymptotic behavior of the FF
- $\ln G(0)=0 \Longrightarrow$ no further terms have to be considered

Splitting the integral $\int_{4 M_{\pi}^{2}}^{\infty}$ into $\int_{4 M_{\pi}^{2}}^{4 M_{p}^{2}}+\int_{4 M_{p}^{2}}^{\infty}$ we obtain the integral equation

$$
\overbrace{\ln G(t)-I_{\mathrm{phy}}^{\infty}(t)}^{\text {Data and Theory }}=\frac{t \sqrt{4 M_{\pi}^{2}-t}}{\pi} \int_{4 M_{\pi}^{2}}^{4 M_{p}^{2}} \frac{\overbrace{\ln |G(s)|}^{s \sqrt{s-4 M_{\pi}^{2}}(s-t)}}{} d s
$$

Solutions are regularized by requiring their total curvature in the unphysical region to be limited

Steep behavior at thresholds

Solutions show resonant structures similar to the expected vector mesons

Handling the unphysical region ${ }_{4}$

Accessing the unphysical region

[C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas]
The initial state π-production

$$
p \bar{p} \rightarrow \pi^{0} e^{+} e^{-}
$$

The process $p \bar{p} \rightarrow \pi^{0} e^{+} e^{-}$

Hadronic current [PRC75 045205]
© $J_{\mu}=\phi_{\pi}\left(p_{\pi}\right) \bar{v}\left(p_{2}\right) O_{\mu} u\left(p_{1}\right)$
© $O_{\mu}=O_{\mu}\left[\Gamma_{\mu}(q)\right]$
e $\left\langle N\left(p^{\prime}\right)\right| \Gamma_{\mu}(q)|N(p)\rangle=\bar{u}\left(p^{\prime}\right)\left[F_{1}\left(q^{2}\right) \gamma_{\mu}+\frac{i \sigma_{\mu \nu} q^{\nu}}{4 M_{p}^{2}} F_{2}\left(q^{2}\right)\right] u(p)$

Background

Polarization observables help in
disentangle reaction mechanisms
[E. A. Kuraev et al., J. Exp. Theor. Phys. 115 (2012) 93 G.I. Gakh, E. Tomasi-Gustafsson, A. Dbeyssi, A.G. Gakh PhysRevC86 (2012) 025204]

The threshold region ${ }_{1}$

The threshold region ${ }_{1}$

The threshold region ${ }_{1}$

Annihilation cross section
 $\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]$

The threshold region ${ }_{1}$

Annihilation cross section

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]
$$

$p \bar{p}$ Coulomb interaction as FSI
[Sommerfeld, Sakharov, Schwinger, Fadin, Khoze]

Schrödinger wave function

$$
C=\left|\Psi_{\text {Coul }}(0)\right|^{2}
$$

© D-wave: $\quad C=1$

No Coulomb factor for boson pairs (P-wave)

The threshold region 2

Partial wave form factors

$$
G_{S}^{p}=\frac{1}{3}\left(2 G_{M}^{p} \sqrt{\frac{q^{2}}{4 M_{p}^{2}}}+G_{E}^{p}\right), G_{D}^{p}=\frac{1}{3}\left(G_{M}^{p} \sqrt{\frac{q^{2}}{4 M_{p}^{2}}}-G_{E}^{p}\right)
$$

Cross section

$$
\sigma\left(q^{2}\right)=2 \pi \alpha^{2} \beta \frac{4 M_{p}^{2}}{\left(q^{2}\right)^{2}}\left[C\left|G_{S}^{p}\left(q^{2}\right)\right|^{2}+2\left|G_{D}^{p}\left(q^{2}\right)\right|^{2}\right]
$$

Step at threshold

$$
\begin{gathered}
\sigma\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\beta}{\beta}\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|^{2}=0.85\left|G_{S}^{p}\left(4 M^{2}\right)\right|^{2} \mathrm{nb} \\
\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|=1 \\
\left|G_{S}^{p}\left(4 M_{p}^{2}\right)\right|=0.99 \pm 0.05
\end{gathered}
$$

The asymptotic regions ${ }_{1}$

The asymptotic regions ${ }_{1}$

The asymptotic regions ${ }_{1}$

Time-like asymptotic behavior

Phragmèn Lindelöf theorem:

If a function $f(z) \rightarrow a$ as $z \rightarrow \infty$ along a straight line, and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along another straight line, and $f(z)$ is regular and bounded in the angle between, then $a=b$ and $f(z) \rightarrow a$ uniformly in this angle.
$\underbrace{\lim _{q^{2} \rightarrow-\infty} G_{E, M}\left(q^{2}\right)}_{\text {space-like }}=\underbrace{\lim _{q^{2} \rightarrow+\infty} G_{E, M}\left(q^{2}\right)}_{\text {time-like }}$

- $G_{E, M} \underset{q^{2} \rightarrow+\infty}{\sim}\left(q^{2}\right)^{-2} \quad$ real

The asymptotic regions 2_{2}

27

An interesting model

Assumption
 Pauli principle pulls away from the internal region of strong chromo-electromagnetic field quarks of same flavor because the color quantum number does not play any role (stochastic averaging).

Outer spatial region

$$
\begin{aligned}
& |p\rangle=\epsilon^{j j k}\left|u_{i} u_{j} d_{k}\right\rangle \\
& \text { charge }=1
\end{aligned}
$$

Central region

$$
\begin{aligned}
& |p\rangle \neq \epsilon^{j k}\left|u_{i} u_{j} d_{k}\right\rangle \\
& \text { charge }=0
\end{aligned}
$$

Counting rule on the vector part of interaction A screening effect from the central region provides an additional suppression for the electric form factor

$$
G_{M}^{p}\left(q^{2}\right)=\mu_{p} G_{D}\left(q^{2}\right)
$$

$$
G_{E}^{p}\left(q^{2}\right)=\frac{G_{D}\left(q^{2}\right)}{1-q^{2} / q_{1}^{2}}
$$

$$
G_{E}^{p}\left(q^{2}\right)=\frac{G_{M}^{p}\left(q^{2}\right) \theta\left(q^{2}-4 M_{p}^{2}\right)}{1+\left(q^{2}-4 M_{p}^{2}\right)^{2} / q_{2}^{2}}
$$

Conclusions

Global models for proton and neutron, electric and magnetic form factors must be encouraged. They can help in understanding...

- the threshold behavior
- the proton radius
- the presence of zeros
- the asymptotic behavior
- the unphysical region
- ...

To measure...

3. zero of G_{E}^{p} in space-like region
(3) moduli of G_{E} and G_{M} in time-like region
(3) complex structure of form factors (polarization)
(3) unphysical time-like form factors ($p \bar{p} \rightarrow \pi^{0} e^{+} e^{-}$)
-.

XXII Baldin ISHEPP, September $19^{\text {th }}, 2014$
Proton form factors in space-like and time-like regions

Experiments: now and future

$$
\underset{\text { Mainz }}{\text { A1. } G_{E}^{p} \text { at }-q^{2}=1.5 \mathrm{Gev}^{2}\left(\text { Pol. }{ }^{3} \mathrm{He}\right)}
$$

Space-like region

$$
\begin{aligned}
& \text { Jeffersors Lád } \\
& \text { [Hall A] } G_{E}^{p} / G_{M}^{p} \text { up to } 14 \mathrm{GeV}^{2} \\
& \text { [Hall A] } G_{M}^{n} \text { (ratio) up to } 18 \mathrm{GeV}^{2}
\end{aligned}
$$

- [Hall A] G_{E}^{n} / G_{M}^{n} up to $10.2 \mathrm{GeV}^{2}$
- [Hall B] G_{M}^{n} (deuterium) up to $14 \mathrm{GeV}^{2}$
- [Hall C] G_{E}^{n} up to $7 \mathrm{GeV}^{2}$

Time-like region

$$
\begin{gathered}
\text { at VEPP-2000 } \\
e^{+} e^{-} \text {collider } \\
\left|G_{\mathrm{eff}}^{p}\right|,\left|G_{\mathrm{eff}}^{n}\right| \text { (scan) } \\
q^{2} \leq(4 \mathrm{GeV})^{2}
\end{gathered}
$$

Fianda at FAlR $p \bar{p}$ collider

$$
\left|G_{E}^{p}\right|,\left|G_{M}^{p}\right|, G_{E}^{p} / G_{M}^{p} \text { phase (} \bar{p} \text { polarization) }
$$

$$
(2.4 \mathrm{GeV})^{2} \leq q^{2} \leq(3.7 \mathrm{GeV})^{2}
$$

at SuperKEKB $e^{+} e^{-}$collider
$\left|G_{E}^{p}\right|,\left|G_{M}^{p}\right|$, (ISR)
$q^{2} \leq(4.5 \mathrm{GeV})^{2}$

Additional slides

Handling the unphysical region ${ }_{3}$

Suppressing unphysical contributions
 [Geshkenbeĭn, loffe, Shifman]

Dispersion relation for

$$
\phi(s)=f(s) \frac{\ln G(s)}{s \sqrt{4 M_{\pi}^{2}-s}}
$$

Assuming $G\left(q^{2}\right) \neq 0$
Cauchy theorem gives

$$
\oint_{C} \phi(s) d s=0
$$

$$
\begin{gathered}
f(s) \text { suppression function } \\
\int_{0}^{4 M_{p}^{2}} f^{2}(s) d s \ll 1
\end{gathered}
$$

$$
-\int_{-\infty}^{0} \frac{\operatorname{lm}[f(t)] \ln G(t)}{t \sqrt{4 M_{\pi}^{2}-t}} d t=\int_{4 M_{\pi}^{2}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-4 M_{\pi}^{2}}} d s
$$

Suppressing unphysical contributions
 [Geshkenbeĭn, loffe, Shifman]

Dispersion relation for

$$
\phi(s)=f(s) \frac{\ln G(s)}{s \sqrt{4 M_{\pi}^{2}-s}}
$$

$$
\begin{gathered}
f(s) \text { suppression function } \\
\int_{0}^{4 M_{p}^{2}} f^{2}(s) d s \ll 1
\end{gathered}
$$

Assuming $G\left(q^{2}\right) \neq 0$
Cauchy theorem gives

$$
\oint_{C} \phi(s) d s=0
$$

$$
\underbrace{-\int_{-\infty}^{0} \frac{\operatorname{lm}[f(t)] \ln G(t)}{t \sqrt{4 M_{\pi}^{2}-t}} d t}_{\text {space-like data }+(-t)^{n}} \simeq \underbrace{\int_{4 M_{p}^{2}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-4 M_{\pi}^{2}}} d s}_{\text {time-like data }+s^{n}}
$$

Sum rule for the asymptotic power law
 $$
G_{M}^{p}\left(q^{2}\right) \underset{\left|q^{2}\right| \rightarrow \infty}{\propto}\left|q^{2}\right|^{-(2.27 \pm 0.36)}
$$

