

Egle Tomasi-Gustafsson¹, Rinaldo Baldini Ferroli² and Simone Pacetti³

¹ IRFU, SPhN-Saclay and IN2P3-IPN, Orsay, France ³ Department of Physics and INFN, Perugia, Italy ³ Laboratori Nazionali di Frascati of INFN, Frascati, Italy

XXII International Baldin Seminar on High Energy Physics Problems

Relativistic Nuclear Physics and Quantum Chromodynamics

September 15th-20th, 2014, Dubna, Russia

Agenda

Nucleon Electromagnetic Form Factors
 Definition and properties

- ➡ The space-like region
 - Proton radius
 - Rosenbluth versus polarization
- The time-like region
 - Unphysical region
 - Threshold
- The asymptotic region
 An interesting model

Conclusions

Proton electromagnetic form factors

Nobel Prize in Physics - 1961

Prize motivation: "for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons".

Robert Hofstadter

Stanford University Stanford, CA, USA

Form factors

- Solution $\mathbf{W}_{\text{point-like}} = \text{const.}$
 - Elastic form factors contain information on the hadron ground state.
 - In a parity and T-invariant theory, the electromagnetic structure of a particle of spin $S\hbar$ is defined by 2S + 1 form factors.
- - Neutron and proton form factors are different.
 - The deuteron has two structure functions, but three form factors.
 - Playground for theory and experiment:

- at low q^2 probe the size of the nucleons;
- at high q^2 test QCD scaling.

Dirac and Pauli Form Factors

Scattering amplitude in **Born** approximation

$$\mathcal{M} = \frac{1}{q^2} \left[e \,\overline{u}(k_2) \gamma_{\mu} u(k_1) \right] \underbrace{\left[e \,\overline{U}(p_2) \Gamma^{\mu}(p_1, p_2) U(p_1) \right]}_{\text{Nucleon EM 4-current: } J_N^{\mu}}$$

From Lorenz and gauge invariance $\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_1^N(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_N} F_2^N(q^2)$

 $Q_N = N$ electric charge

 $\kappa_{N} = N$ anomalous magnetic moment

XXII Baldin ISHEPP, September 19th, 2014

Sachs Form Factors

Breit frameNo energy exchanged $p_1 = (E, -\vec{q}/2)$ $p_2 = (E, \vec{q}/2)$ $q = (0, \vec{q})$

Nucleon elecrtomagnetic four-current

$${}^{\mu}_{N} = (J^{0}_{N}, \vec{J}_{N}) \qquad \begin{cases} \rho_{q} = J^{0}_{N} = e \left[F^{N}_{1} + \frac{q^{2}}{4M^{2}_{N}} F^{N}_{2} \right] \\ \vec{J}_{N} = e \, \overline{U}(p_{2}) \vec{\gamma} U(p_{1}) \left[F^{N}_{1} + F^{N}_{2} \right] \end{cases}$$

Sachs Nucleon Form Factors

$$G_M^N(q^2) = F_1^N(q^2) + F_2^N(q^2)$$

$$G_E^N(q^2) = F_1^N(q^2) + \frac{q^2}{4M_N^2}F_2^N(q^2)$$

In the Breit frame represent the Fourier transforms of charge and magnetic moment spatial distributions of the nucleon

Normalization at
$$q^2 = 0$$

 $G_E^N(0) = Q_N$
 $G_M^N(0) = \mu_N$
 $G_M^N(0) = \mu_N$

XXII Baldin ISHEPP, September 19th, 2014

Cross sections and analyticity

$$\frac{\overline{d\sigma}}{d\Omega} = \frac{\alpha^2 \omega_2 \cos^2 \frac{\theta_e}{2}}{4\omega_1^3 \sin^4 \frac{\theta_e}{2}} \left[G_E^2 - \tau \left(1 + 2(1 - \tau) \tan^2 \frac{\theta_e}{2} \right) G_M^2 \right] \frac{1}{1 - \tau} \quad \tau = \frac{q^2}{4M_N^2}$$

Annihilation

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \qquad \beta = \frac{1}{\tau} \left[\frac{1}{\tau} \sin^2 \theta |G$$

XXII Baldin ISHEPP, September 19th, 2014

XXII Baldin ISHEPP, September 19th, 2014

XXII Baldin ISHEPP, September 19th, 2014

$$\begin{aligned} G_{E}^{p}(q^{2}) &= \int d^{3}\vec{r} \,\rho(r) \,e^{i\,\vec{q}\cdot\vec{r}} = 1 + \frac{1}{6}q^{2}\left\langle r_{c}^{2}\right\rangle + \mathcal{O}(q^{4}) \\ \rho(r): \text{ normalized spherical charge density} \end{aligned}$$

$$\begin{aligned} & \text{The charge radius} \\ \hline T_{E} &= \sqrt{\langle r_{c}^{2}\rangle} = \sqrt{4\pi \int_{0}^{\infty} r^{4} \rho(r) \, dr} = \sqrt{\frac{6}{G_{E}^{p}(0)} \left. \frac{dG_{E}^{p}}{dq^{2}} \right|_{q^{2}=0}} \end{aligned}$$

$$\begin{aligned} \text{harge density} \quad Form factor \\ G_{E}^{p}(q^{2}) \quad Charge radius \\ r_{E} \quad Comments \\ \delta^{3}(r) \quad 1 \quad 0 \quad \text{pointlike} \end{aligned}$$

$$\begin{aligned} e^{-\lambda r} \quad \lambda^{4}/(q^{2}+\lambda^{2})^{2} \quad 2\sqrt{3}/\lambda \quad \text{dipole} \\ e^{-\lambda r'} \quad \lambda^{2}/(q^{2}+\lambda^{2}) \quad \sqrt{6}/\lambda \quad \text{monopole} \\ e^{-\lambda r^{2}}/r^{2} \quad e^{-r^{2}/(4\lambda^{2})} \quad 1/\sqrt{2\lambda} \quad \text{gaussian} \end{aligned}$$

XXII Baldin ISHEPP, September 19th, 2014

С

XXII Baldin ISHEPP, September 19th, 2014

Ongoing discussions... Radiative corrections Two-photon exchange Coulomb corrections

Extrapolating
$$q^2 \to 0^-$$

DR: $r_E^2 = \frac{12M_\pi^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\ln |G_E^{\rho}(t)/G_E^{\rho}(0)|}{t^2 \sqrt{t - 4M_\pi^2}} dt$

XXII Baldin ISHEPP, September 19th, 2014

Rosenbluth separation (one-photon exchange)

Rosenbluth formula

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{1}{1-\tau} \left[G_E^2 - \frac{\tau}{\epsilon} G_M^2\right] \qquad \tau = \frac{q^2}{4M_N^2}$$
Mott pointlike cross section
$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{4\alpha^2}{(-q^2)^2} \frac{E_2^3}{E_1} \cos^2(\theta_e/2)$$
Photon polarization
$$\epsilon = \left[1 + 2(1-\tau) \tan^2(\theta_e/2)\right]^{-1}$$

XXII Baldin ISHEPP, September 19th, 2014

G_{F}^{p} and G_{M}^{p} with Rosenbluth separation

XXII Baldin ISHEPP, September 19th, 2014

Dipole approximation and pQCD

Lett. Nuovo Cim. 7 (1973) 719 Phys. Rev. Lett. 31 (1973) 1153 JETP Lett. 96 (2012) 6-12

Polarization observables

A.I. Akhiezer, M.P. Rekalo, Sov. Phys. Dokl. 13, 572 (1968)

 $\begin{array}{l} \hline \hline \textbf{B} \\ \hline \textbf{B} \\ \hline \textbf{B} \\ \textbf{C} \\$

M In case of polarized ($h = \pm 1$) electrons on unpolarized nucleon target:

$$P'_{x} = -\frac{2\sqrt{\tau(\tau-1)}}{G_{E}^{2} - \frac{\tau}{\epsilon}G_{M}^{2}} G_{E}G_{M} \tan\left(\frac{\theta_{\theta}}{2}\right) \qquad P'_{z} = \frac{(E_{\theta} + E'_{\theta})\sqrt{\tau(\tau-1)}}{M\left(G_{E}^{2} - \frac{\tau}{\epsilon}G_{M}^{2}\right)} G_{M}^{2} \tan^{2}\left(\frac{\theta_{\theta}}{2}\right)$$
$$\frac{P'_{x}}{P'_{z}} = -\frac{2M\cot(\theta_{\theta}/2)}{E_{\theta} + E'_{\theta}} \frac{G_{E}}{G_{M}}$$

XXII Baldin ISHEPP, September 19th, 2014

$G_{F}^{\rho}/G_{M}^{\rho}$ in polarization transfer experiments

The time-like region

XXII Baldin ISHEPP, September 19th, 2014

The time-like region

XXII Baldin ISHEPP, September 19th, 2014

The time-like region

Differential cross section $e^+e^- \rightarrow p\overline{p}$ A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto [NC XXIV (1962) 170] $\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} \left[(1 + \cos^2 \theta) |G_M^p|^2 + \frac{1}{\tau} \sin^2 \theta |G_E^p|^2 \right]$ Optical theorem $\operatorname{Im}\langle \overline{N}(p')N(p)|j^{\mu}|0\rangle \sim \sum_{n}\langle \overline{N}(p')N(p)|j^{\mu}|n\rangle\langle n|j^{\mu}|0\rangle$ are on-shell intermediate states: 2π , 3π , 4π , ... Form factors are complex for $q^2 > 4M_{\pi}^2$ time The cross section is an even function of $\cos \theta$ The cross section does not depend on the form factor phases At high q^2 the $|G_{F}^{p}|^2$ contribution is suppressed The unphysical region is not accessible through the annihilations $e^+e^- \leftrightarrow p\overline{p}$

XXII Baldin ISHEPP, September 19th, 2014

Proton effective form factor

• No individual determination of $|G_E^p|$ and $|G_M^p|$.

- Time-like proton form factors are larger (factor of two) than their space-like values at the same |q²|.
- -
- The threshold behavior is very steep.
- It is not smooth. Structures? Resonances?...

Initial State Radiation

Better control on systematics • All energies (q^2) at the same time \Rightarrow (greatly reduced point to point)

Detected ISR at large angles ⇒ full X_{had} angular coverage

• CM boost \Rightarrow {efficiency at threshold $\neq 0$ energy resolution $\sim 1 \text{ MeV}$

$e^+e^- \rightarrow p\overline{p}$ angular distribution (*BABAR*)

PRD87, 092005

XXII Baldin ISHEPP, September 19th, 2014

Time-like $|G_E^p/G_M^p|$ measurements

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} |G_M^p|^2 \left[(1+\cos^2\theta) + \frac{4M_p^2}{q^2}\sin^2\theta \left| \frac{G_E^p}{G_M^p} \right|^2 \right]$$

$\gamma\gamma$ exchange from $e^+e^- \rightarrow p\overline{p}\gamma$ **BABAR** 2013 data

E. Tomasi-Gustafsson, E.A. Kuraev, S. Bakmaev, SP, Phys. Lett. B659 (2008) 197 Phys. Rev. D87 (2013) 092005

XXII Baldin ISHEPP, September 19th, 2014

The unphysical region

The unphysical region

XXII Baldin ISHEPP, September 19th, 2014

The unphysical region

Handling the unphysical region₁

Model dependent disclosing [Höler, Mergell, Meissner, Hammer]

Optical theorem $\operatorname{Im}\langle \overline{N}(p')N(p)|j^{\mu}|0\rangle \sim \sum_{n} \langle \overline{N}(p')N(p)|j^{\mu}|n\rangle \langle n|j^{\mu}|0\rangle$ Dispersion relations for the imaginary part $F(q_{SL}^2) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im}F(q_{TL}^2)}{q_{TL}^2 - q_{SL}^2} dq_{TL}^2$

The ρ resonance with finite width

Dirac delta poles for higher mass states

Super convergence relations $\int_{4M_{\pi}^{2}}^{\infty} \text{Im } F_{1,2}(q^2) dq^2 = 0$ $\int_{4M_{\pi}^{2}}^{\infty} q^2 \text{Im } F_2(q^2) dq^2 = 0$

 Asymptotic behaviors from perturbative QCD

XXII Baldin ISHEPP, September 19th, 2014

Handling the unphysical region₂

Model independent disclosing [EPJC11 709]

Dispersion relation subtracted at t = 0 $\ln G(t) = \frac{t\sqrt{4M_{\pi}^2 - t}}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\ln |G(s)| ds}{s\sqrt{s - 4M_{\pi}^2}(s - t)}$

- Less dependent on the asymptotic behavior of the FF
- In G(0) = 0 ⇒ no further terms have to be considered

Splitting the integral
$$\int_{4M_{\pi}^2}^{\infty} \operatorname{into} \int_{4M_{\pi}^2}^{4M_{p}^2} + \int_{4M_{p}^2}^{\infty} \operatorname{we obtain the integral equation}$$

Data and Theory
 $\operatorname{In} G(t) - I_{\text{phy}}^{\infty}(t) = \frac{t\sqrt{4M_{\pi}^2 - t}}{\pi} \int_{4M_{\pi}^2}^{4M_{p}^2} \frac{\operatorname{In} |G(s)|}{\operatorname{sol} ds} ds$

XXII Baldin ISHEPP, September 19th, 2014

Handling the unphysical region₄

Accessing the unphysical region [C. Adamuscin, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas]

The process $ho\overline{
ho} o \pi^0 e^+ e^-$

Described in general by **six** amplitudes which depend on **three** kinematical variables

Background Annihilation diagram $e^{-}(p_{-})$ $\overline{p}(p_{2})$ $\gamma^{*}(q)$ $e^{+}(p_{+})$ $p(p_{1})$ $\pi^{0}(p_{\pi})$

Polarization observables help in disentangle reaction mechanisms [E. A. Kuraev *et al.*, J. Exp. Theor. Phys. 115 (2012) 93 G.I. Gakh, E. Tomasi-Gustatsson, A. Dbeyssi, A.G. Gakh PhysRevC86 (2012) 025204]

XXII Baldin ISHEPP, September 19th, 2014

XXII Baldin ISHEPP, September 19th, 2014

Annihilation cross section
$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right]$$

$$\sigma(4M_{\rho}^{2}) = \frac{\pi^{2}\alpha^{3}}{2M_{\rho}^{2}} \frac{\beta}{\beta} |G_{S}^{\rho}(4M_{\rho}^{2})|^{2} = 0.85 |G_{S}^{\rho}(4M^{2})|^{2} \text{ nb}$$
$$|G_{S}^{\rho}(4M_{\rho}^{2})| = 1$$
$$|G_{S}^{\rho}(4M_{\rho}^{2})| = 0.99 \pm 0.05$$

The asymptotic regions₁

The asymptotic regions₁

XXII Baldin ISHEPP, September 19th, 2014

The asymptotic regions₁

Time-like asymptotic behavior

Phragmèn Lindelöf theorem:

If a function $f(z) \rightarrow a$ as $z \rightarrow \infty$ along a straight line, and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along another straight line, and f(z) is regular and bounded in the angle between, then a = b and $f(z) \rightarrow a$ uniformly in this angle.

$$\begin{array}{c}
 \underbrace{\lim_{q^2 \to -\infty} G_{E,M}(q^2)}_{\text{space-like}} = \underbrace{\lim_{q^2 \to +\infty} G_{E,M}(q^2)}_{\text{time-like}} \\
 \bullet G_{E,M} \underset{q^2 \to +\infty}{\sim} (q^2)^{-2} \quad \text{real}
\end{array}$$

The asymptotic regions₂

An interesting model

E. A. Kuraev, E. Tomasi-Gustafsson, A. Dbeyssi PLB712 240

Conclusions

Global models for proton and neutron, electric and magnetic form factors must be encouraged. They can help in understanding...

- the threshold behavior
- the proton radius
- the presence of zeros
- the asymptotic behavior
- the unphysical region

To measure...

6 . . .

- \ge zero of G_E^p in space-like region
- moduli of G_E and G_M in time-like region
- complex structure of form factors (polarization)
- rightarrow unphysical time-like form factors ($p\overline{p}
 ightarrow \pi^0 e^+ e^-$)

XXII Baldin ISHEPP, September 19th, 2014

. . .

Experiments: now and future

XXII Baldin ISHEPP, September 19th, 2014

Additional slides

XXII Baldin ISHEPP, September 19th, 2014

Handling the unphysical region₃

Handling the unphysical region₃

XXII Baldin ISHEPP, September 19th, 2014

XXII Baldin ISHEPP, September 19th, 2014