The XXII International Baldin Seminar on High Energy Physics Problems

# At the End of the Nuclear Map

Yuri Oganessian

Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research

141980 DUBNA, Moscow region, RF

"Relativistic Nuclear Physics and Quantum Chromodynamics" JINR September 15-20, 2014 in Dubna, Russia.



## Today we will discuss:

- How big a nucleus may be,
- What is a maximum number of protons and neutrons it may contain,
- What is the limit of atomic nuclei mass and how it is determined.



In the first attempts of describing the properties of nuclear matter a daring supposition was made that atomic nucleus is an object similar to a drop of positively charged liquid, the so called



G. Gamow 1928

## Nuclear Charge Liquid-Drop Model



K.A. Petrzhak





Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna



# Nuclear shells (macro-microscopic approach)



**Chart of nuclides** 



#### Predictions of the microscopic theory

#### **Fission Barriers**

...and Half - Lives



Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna



# **Reaction of Synthesis**

In laboratory conditions the heaviest elements are produced in collisions of massive nuclei at great velocities... (up to 1/10 of the speed of light

#### **Reactions of synthesis**



#### **Reactions of Synthesis**









K. Siwek-Wilczy´nska et al., PR C86, 014611 (2012)

#### TARGETS

| 48Ca - PROJECTILES         | lsotope | Target<br>thickness<br>mg/cm <sup>2</sup> | lsotope<br>enrichment<br>% | Setup |
|----------------------------|---------|-------------------------------------------|----------------------------|-------|
|                            | 233U    | 0.44                                      | 99.92                      | DGFRS |
| Energy:<br>235-250 MeV     | 237Np   | 0.35                                      | 99.3                       | DGFRS |
|                            | 238U    | 0.35                                      | 99.3                       | DGFRS |
| Intensity:                 | 242Pu   | 0.40                                      | 99.98                      | DGFRS |
| <b>1.0-1.2 pμA</b>         |         | 1.40                                      | 99.98                      | Chem. |
| Consumption                | 243Am   | 0.36                                      | 99.9                       | DGFRS |
| 0.5 mg/h                   |         | 1.20                                      | 99.9                       | Chem. |
|                            | 244Pu   | 0.38                                      | 98.6                       | DGFRS |
| Beam dose:                 | 245Cm   | 0.35                                      | 98.7                       | DGFRS |
| up to 4.5·10 <sup>19</sup> | 248Cm   | 0.35                                      | 97.4                       | DGFRS |
|                            | 249Bk   | 0.35                                      | ≥90                        | DGFRS |
|                            | 249Cf   | 0.30                                      | ≥90                        | DGFRS |



Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna

"veto" detectors

detector

station

side

detectors

recoils

22.5<sup>0</sup>

**T**<sub>min</sub> ~ 1μs

#### low-background detection scheme





## **Even Z Nuclei** 1999 - 2005

<sup>249</sup>Cf + <sup>48</sup>Ca

#### **Energy spectra of alpha particles**







Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna

even-even isotopes



Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna



Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna

#### June, 2013





Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna

## Odd Z Nuclei

2003 - 2012

<sup>249</sup>Bk + <sup>48</sup>Ca



Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna

## **Confirmations of DGFRS data**

2007 - 2014

| A/Z                     | Setup | Laboratory         | Publications                        |
|-------------------------|-------|--------------------|-------------------------------------|
| <sup>283</sup> 112      | SHIP  | GSI Darmstadt      | Eur. Phys. J. A32, 251 (2007)       |
| <sup>283</sup> 112      | COLD  | PSI-FLNR (JINR)    | NATURE 447, 72 (2007)               |
| <sup>286, 287</sup> 114 | BGS   | LBNL (Berkeley)    | P.R. Lett. 103, 132502 (2009)       |
| <sup>288, 289</sup> 114 | TASCA | GSI – Mainz        | P.R. Lett. 104, 252701 (2010)       |
| <sup>292, 293</sup> 116 | SHIP  | GSI Darmstadt      | Eur. Phys. J. A48, 62 (2012)        |
| <sup>287, 288</sup> 115 | TASCA | GSI – Mainz        | P.R. Lett. 111, 112502 (2013)       |
| <sup>293, 294</sup> 117 | TASCA | GSI – Mainz        | P.R. Lett. 112, 172501 (2014)       |
| <sup>292, 293</sup> 116 | GARIS | <b>RIKEN Tokyo</b> | Accelerator Progress Rep.<br>(2013) |





Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna



With Z >40% larger than that of Bi, the heaviest stable element, we see an impressive extension in nuclear survival.

Although SHN are at the limits of Coulomb stability,

- shell stabilization lowers ground-state energy,
- creates a fission barrier,
- and thereby enables SHN to exist.

The fundamentals of the modern theory for mass limits of nuclear matter were given experimental verification.

# The discovery of SHE raised a questions:

# The discovery of SHE raised a questions:



Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna



Yu/ Oganessian. XXII International Baldin Seminar, September 15-20, 2014, JINR, Dubna

**Obviously...** 

the field of the research is limited by the production of super heavy nuclei Everything we know about SH-nuclei produced in <sup>48</sup>Ca-induced reactions:

# ...allow us to think about a SHE-Factory with production rate about 100 times higher than what we currently have

Factory of SHE

## **SHE-Factory**

Isotope production: Cm-248 Bk-249 Cf-251 To be increased 10 times

New accelerator High beam dose of : Ca-48 Factor 10-20 Ti-50 Ni-64

Depend of target durability

SC- separator & sophisticated detectors

Factor 3-5 is closely linked to the intellect



## **Fission Loss at Heavy Actinides**





ORNL, Oak Ridge, Tennessee, USA

In solution

April 2014

## 12 segments of rotational target made from mixed Cfisotopes



Oak Ridge National Laboratory, August, 2014

## September 2014



## Oak Ridge National Laboratory, USA

#### **HEAVIEST NUCLEI**



Yu/O EXON- 2014, Sept.8, 2014, Kaliningrad, RF



## New accelerator and new Lab. in Dubna

today: ~  $5 \cdot 10^{19}$ /y with Factory:  $1.0 \cdot 10^{21}$ /y

|                                | beam dose<br>Beam intensity |        |   | factor: ~ 20         |  |
|--------------------------------|-----------------------------|--------|---|----------------------|--|
|                                |                             |        | & | Beam time            |  |
|                                | 10-                         | 20 ρμΑ |   | •                    |  |
| G. Gulbekian<br>Project Leader |                             |        |   | Factory              |  |
|                                |                             |        |   | <b>~ 7000 h/year</b> |  |
| New                            | 0                           |        |   |                      |  |
| · cyclo                        | otron                       |        |   |                      |  |







Novokramatorks Ukraine

A.

0)

August 2014

Scheme of the production and delivery SH-atoms to the detectors







Assuming for the SH-nuclide  $T_{SF} = 10^9$  years

<sup>3</sup>He - counters

**Os-sample** 

550 g. (metallic)

the counting rate **1 decay / year** from a 1000-g metallic Os sample corresponds to the ratio Hs/Os:

~ 7·10<sup>-16</sup> g/g

or ~  $10^{-23} \text{ g/g}$ 

in the Earth's crust or in the meteorit's matter

compared with previous attempts the sensitivity is increased by a factor  $\sim 10^9$ 



Yu. Oganessian. "Heaviest Nuclei" ANL Colloquium, May 28, 2010, Argonne, IL, USA



#### **Relativistic Contraction**



P. Pyykkö Phys. Chem. Chem. Phys. 13, 161-168 (2011)



Yu. Oganessian."At the End of the Periodic Table" 2013 SCNAT Annual Congress, Nov.22, Winterthur, Switzerland

R. Eichler, H. Gâggeler et al., Nature 447 (2007) 72



## Element 112 is a noble metal – like Hg!

