On Hyperon Polarization in Heavy Ion Collisions

Genis Musulmanbekov JINR, <u>genis@jinr.ru</u> In collaboration with A. Silenko

Content

- Introduction
- Global polarization (GP) in HIC
- 'Horn'-effect in HIC
- New mechanism of Strangeness Enhancement
- Effects of Strong magnetic field in HIC
- Effects of Angular Momentum and Vorticity in HIC
- Measurement of Global Polarization of Hyperons
- Conclusion

Introduction

Polarization of Hyperons in **unpolarized pp** and **pA** experiments

FNAL: $p + Be \rightarrow \Lambda + X$ at $E_p = 300 \text{ GeV}$ *G.Bunce, et. al, PRL, 36, 1113.*

Are Hyperons polarized in HIC experiments?

E896 (AGS) Au+Au at E = 11 AGeV *R. Bellwied et al.*, Nucl. Phys., A698 (2002) 499c.

Polarization in Au+Au is the same as in pp and pA !

Introduction

- Polarization of Λ 's in **unpolarized pp**, **pA** and **AuAu** experiments was detected w,r,t, the **production plane**.
- Mechanism of polarization in all processes is the same.

Hyperons formed in QGP

Liang Z and Wang X N 2005 Phys. Rev. Lett. **94 102301 Global Polarization** of Hyperons: polarization w.r.t. the **reaction plane**

Global Hyperon Polarization E896 (AGS, $\sqrt{s} = 4.8 \text{ GeV}$) + (the same as in p

- Global polarization in AuAu/PbPb collisions
 - NA49 (SPS, $\sqrt{s} = 17.2 \text{ GeV}$) no evidence
 - STAR (RHIC, $\sqrt{s} = 62, 200 \text{ GeV}$) no evidence

Interpretation:

Formation of QGP randomizes orientation of u, d, s – quarks spins. Therefore the spins of hyperons have no preferred direction.

• However

- ✓ Hyperon polarization was not measured w.r.t. the production plane!
- \checkmark It should exist in peripheral events, like in pp and pA collisions.

Global Hyperon Polarization E896 (AGS, $\sqrt{s} = 4.8$ GeV) + (the same as in p

Conjecture: Global polarization in HIC could take place at lower energies (CBM, NICA, BES RHIC).

Peculiarities of HIC at CBM, NICA, BES RHIC Energies

- Maximal density of baryonic matter
- 'Horn' effect enhanced yield of strangeness.

Two reasons of the global polarization

- Strong magnetic field in semi-central events.
- Very large angular momentum of a nuclear matter in semi-central events.

Strangeness enhancement (SE) in HIC at NICA energies

K/π and Λ/π ratio in central PbPb/ AuAu collisions

Clear evidence for horn structure in K⁺/ π ⁺ and (Λ + Σ ⁰)/ π Non-horn structure in K⁻/ π ⁻

Transport models fail to describe experimental data

NICA energy region is selected by blue bar

Why 'horn' structure takes place for K^+/π^+ but not for K^-/π^- ?

Baryon density in HIC

Baryon density evolution At NICA energies $\rho/\rho_0 \sim 5 - 10$

Baryon density at freeze-out

New mechanism of Strangeness Enhancement (SE) in HIC

Conjectures:

- Baryonic matter compression \rightarrow Strange Quark Pairs $\langle SS \rangle$ Condensation in ${}^{3}P_{0}$ - model of vacuum
- Strange Quark Pairs Condensation → Nucleons to Hyperons Transformation + Kaons Production
- Phase Transition: Nuclear Matter → Hypernucler Matter + Kaon Condensate

Proton Transformation channels

$$p(uud) \quad u, d \to s$$

$$p(uud) \rightarrow \Sigma^{+}(uus) + K^{0}(d\bar{s})$$

$$\rightarrow \Lambda^{0}(uds) + K^{+}(u\bar{s})$$

$$\rightarrow \Xi^{-}(dss) + 2K^{+}(u\bar{s})$$

$$\rightarrow \Xi^{0}(uss) + K^{0}(d\bar{s}) + K^{+}(u\bar{s})$$

$$\rightarrow \Omega^{-}(sss) + 2K^{+}(u\bar{s}) + K^{0}(d\bar{s})$$

$$\begin{cases} S = 2 \\ S = 3 \end{cases}$$

No K⁻ are producled

Neutron Transformation channels

 $n(udd), u, d \rightarrow s$

$$n(ddu) \rightarrow \Sigma^{-}(dds) + K^{+}(u\bar{s})$$

$$\rightarrow \Lambda^{0}(uds) + K^{0}(d\bar{s})$$

$$\rightarrow \Xi^{0}(uss) + 2K^{0}(d\bar{s})$$

$$\rightarrow \Xi^{-}(dss) + K^{0}(d\bar{s}) + K^{+}(u\bar{s})$$

$$\rightarrow \Omega^{-}(sss) + 2K^{0}(d\bar{s}) + K^{+}(u\bar{s})$$

$$\left. \right\} S = 3$$

No K⁻ are producled

Strangeness production in HIC

• **binary collisions** - competing mechanism of strangeness production

~
$$1/\lambda_{int}$$
 ~ $\rho\sigma_{hN}$

- λ_{int} mean free path
- σ_{hN} $\,$ hadron-nucleon cross section
- Nucleon transformation to a hyperon $\sim (\tau_o / \tau_{re}) \; f(\rho)$
- $\tau_{\rm o}~$ overlap time
- $\tau_{re}~$ rearrangement time

New SE Mechanism in HIC

K/ π and Λ/π ratio

Global Polarization induced by Magnetic Field created in HIC ? Au + Au: A = 197, Z = +79

Strong Magnetic Field

Magnetic Field created in HIC

V. Skokov, et. al, arXive:nud-th/0907.1396

$$e\vec{B}(t, \vec{x'}) = \alpha_{\rm EM} \sum_{i} Z_{i} \frac{1 - v_{i}^{2}}{(R_{i} - \vec{R}_{i} \vec{v}_{i})^{3}} \left[\vec{v}_{i} \times \vec{R}_{i} \right]$$

At NICA energies $\sqrt{s_{\rm NN}} = 4 - 11 \, GeV$
Au + Au at $b \approx 5 \, fm$
 $eB_{y} \approx 0.05 \div 0.075 m_{\pi}^{2}$,
 $B_{y} \approx 10^{16} \, Gauss \approx 10^{12} \, Tesla$

Particle polarization in presence of magnetic field

Particles with spin 1/2 in magnetic field B_0

Energies of the states

 $E_{+}=-\mu B_{0}, \ E_{-}=\mu B_{0},$

The ocupation numbers

$$n_{+} = \exp\left(-\frac{E_{+}}{kT}\right) \left\{ \exp\left(-\frac{E_{+}}{kT}\right) + \exp\left(-\frac{E_{-}}{kT}\right) \right\}^{-1}$$
$$n_{-} = \exp\left(-\frac{E_{-}}{kT}\right) \left\{ \exp\left(-\frac{E_{+}}{kT}\right) + \exp\left(-\frac{E_{-}}{kT}\right) \right\}^{-1}$$

Polarization - the difference in ocupation of the states

$$\mathbf{P} = \frac{1}{2} n_{+} - \frac{1}{2} n_{-} \approx \frac{1}{2} \frac{E_{-} - E_{+}}{kT}$$

Hyperon polarization in presence of magnetic field

 $\sqrt{s} = 4 - 11 \text{ GeV}$ T ~ 100 MeV

Magnetic Field : $B_y \approx 10^{12}$ Tesla 2009

V. Skokov et. al, Mod. Phys. Lett.,

Nuclear magneton: $\mu_N = 3.15 \cdot 10^{-14} \text{ MeV/Tesla}$

 $E{=}{-}\mu_h \; B$

part	р	Λ	Σ^+	Σ-	Ξ^0	Ξ-	Ω-
$ \mu_h B_y ,$ (MeV)	0.091	0.019	0.077	0.037	0.039	0.020	0.064
P, (%)	0.2	0.04	0.15	0.07	0.07	0.04	0.13

Polarization induced by the magnetic field created in HIC is near zero.

Global Hyperon Polarization induced by Orbital Angular Momentum?

Large Orbital Angular Momentum

 $L_y \sim A \sqrt{s_{_{NN}}} b / 2$

Au + Au

RHIC energies $\sqrt{s} = 200 \, GeV$

at $b \approx 5 \ fm \ L_y \approx 5 \times 10^5$

No evidence for Polarization at RHIC Abelev, Phys. Rev. C76,024915

Proposal:

Hyperon Polarization can be observed at NICA, CBM and BES RHIC NICA energies $\sqrt{s} = 4 \div 11 \, GeV$

at $b \approx 5 \ fm \ L_y \approx 2.5 \times 10^4$

Orbital Angular Momentum in HIC

Orbital Angular Momentum in HIC

Au+Au at $\sqrt{s} = 9 \text{ GeV}$

Global orbital angular momentum

Gradient in p_z -distribution along the *x*-direction

Local Orbital Angular Momentum

 $\boldsymbol{\omega} = (1/2) \nabla \times \mathbf{v}$

Local Orbital Angular Momentum

Au+Au at $\sqrt{s} = 9$ GeV, b = 6 fm

Hyperon polarization in HIC

- Particles in the overlap region of two colliding nuclei could be polarized due to the large orbital momentum created in the non-central HIC.
- Proposal:
- Hyperon Polarization can be observed at NICA, CBM and BES RHIC
- Why?

Global Polarization Hyperons in Non-Central HIC

- Hyperons could be polarized due to the large orbital momentum or/and strong magnetic field, created in the non-central HIC.
- Preferable (measurable) types of hyperons $-\Lambda$, Ξ^- , Ω^- :
 - $\Lambda \rightarrow p\pi^{-}$
 - $\Xi^{-} \rightarrow \Lambda \pi^{-}$
 - $\Omega^{-} \rightarrow \Lambda K^{-} (B.R. 68\%)$
- Global polarization are measured w.r.t. the reaction plane.
- Reaction plane is defined by a directed flow.

Measurement of Global Polarization

2

$$\frac{dN}{d\cos\theta^*} \sim 1 + \alpha_H P_H \cos\theta^*,$$
$$P_H = \frac{3}{\alpha_H} \langle \cos\theta^* \rangle.$$
$$P_H = \frac{8}{\pi\alpha_H} \langle \sin(\phi_p^* - \Psi_{\rm RP}) \rangle.$$

$$L$$

$$P_{p}$$

$$\theta_{p}$$

 $v_1^H = \langle \cos(\phi_H - \Psi_{\rm RP}) \rangle,$

Reaction Plane vs. Collective Flow

Non-central HIC interaction in overlap region results in a **pressure gradient** => spatial asymmetry is converted to an asymmetry in momentum space => **collective flow**

Definitions: Flows

 Ψ_r - Reaction Plane

 $2v_n \cos[n(\varphi - \Psi_r)]$ - azimuthal asymmetry

 $v_1 = \langle \cos[(\varphi - \Psi_r)] \rangle$ - direct flow

 $v_2 = \langle \cos[2(\varphi - \Psi_r)] \rangle$ - elliptic flow

Conclusion

- Enhanced yield of Strangeness at $\sqrt{s} \sim 4 \div 10$ GeV may be a manifestation of the nucleon hyperon phase transition in a dense baryonic matter.
- Global hyperon polarization could be preferably detected at this energy range (only!).

Thank you for attention!

MPD layout

Length of TPC -340 cm, D=300cm

Extended ZDC detector

Simulation of Extended ZDC within mpdroot:

- $L \approx 120$ cm
- 5 < R < 61 cm (radius of the inscribe circle)
- $d_{cell} = 5x5 cm$
 - $z_0 = 365$ cm (distance from the int. point to ZDC)
 - $0.8^{\circ} < \theta < 9.3^{\circ}$ (covered zenith angle)
 - $2.5 < \eta < 5.0$ (covered pseudorapidity range)

RP reconstruction by Extended ZDC detector

$$\varphi_{RP} = \arctan \frac{\sum \Delta E_{vis,i} y_i}{\sum \Delta E_{vis,i} x_i}$$

$$\delta \varphi_{RP} = \left\langle \left| \varphi_{EP} - \varphi_{RP} \right| \right\rangle = \left\langle \Delta \varphi_{RP} \right\rangle$$

 $R = \left\langle \cos(\Delta \varphi_{RP}) \right\rangle$

- No particle identification
- Geant 3
- Systematic effect of magnetic field:

~1° at 9 AGeV increases to ~3° at 3 AGeV

ZDC sizes and acceptances

D = 365 cm - distance from interaction point to ZDC

 $R_{hole} = 5 \text{ cm}$ $\theta = 0.8^{\circ}$ $\eta = 5.0$

R _{ZDC} = 61 cm	$\theta = 9.54^{\circ}$	η = 2.5 ÷ 5.0
R _{ZDC} = 50 cm	$\theta = 7.84^{\circ}$	η = 2.7 ÷ 5.0
R _{ZDC} = 41 cm	$\theta = 6.4^{\circ}$	η = 2.9 ÷ 5.0
R _{ZDC} = 33 cm	$\theta = 5.26^{\circ}$	η = 3.1 ÷ 5.0

RP resolution in MC-events for different acceptances of ZDC

RP resolution, $R = \langle \cos(\Delta \psi_1) \rangle$

no particle identification

