# Fragmentation of relativistic nuclei ${ }^{10} \mathrm{C}$ in a nuclear track emulsion 

K.Z. Mamatkulov

XXII International Baldin Seminar on High Energy Physics Problems. JINR, Dubna. 19.09.2014

Energy levels of

## ${ }^{10} \mathrm{C}$




$$
\frac{4.0060}{{ }^{9} B+p}
$$

${ }^{10} \mathrm{C} \rightarrow{ }^{9} \mathrm{~B}+\mathrm{p} \rightarrow{ }^{8} \mathrm{Be}+2 \mathrm{p} \rightarrow 2 \alpha+2 \mathrm{p}$


0

$\bigcirc$
$\bigcirc$



A micrograph one of the events of the nuclear fragmentations in the channel ${ }^{10} \mathrm{C} \rightarrow \mathbf{2 H e}+\mathbf{2 H}$.

## Irradiation of the emulsion in the beam nuclei $\mathrm{Be}, \mathrm{C}$ and N with energy 1.2 A GeV



Amplitude spectrum from a scintillation counter, shows the positions of the peaks for nuclei with charges $\mathbf{Z}_{\mathrm{pr}}=4,6$ and 7

## Determination of charge and mean-free path of beam

 particles in the emulsion$>$ Viewed plates - 12 pcs.
$>$ The total length of viewing of primary tracks - 1088.1 m .
$>$ Number of total events - 7241
$>$ Number of events ("white stars") - 608



Distribution of tracks beam nuclei by the number of $\delta$-electrons $\mathrm{N}_{\delta}$ per 1 mm length of the tracks.

The average range $\lambda(\mathrm{A})$ for inelastic interactions depending on the mass of the projectile nuclei A ; the curve - calculation by the ratio of Bradta Peters.

The observed fragmentation channels ${ }^{10} \mathrm{C}$ nuclei ("White stars")

| Channels $\left({ }^{\mathbf{1 0}} \mathbf{C}\right)$ | $\mathbf{N}_{\mathbf{w s}} \mathbf{= 2 2 7}$ | $\mathbf{1 0 0 \%}$ | $\mathbf{N}_{\mathbf{t t}}=\mathbf{6 2 7}$ | $\mathbf{1 0 0 \%}$ |
| :---: | :---: | :---: | :---: | :---: |
| $2 \mathrm{He}+2 \mathrm{H}$ | $\mathbf{1 8 6}$ | $\mathbf{8 1 . 9}$ | 361 | 57.6 |
| $\mathrm{He}+4 \mathrm{H}$ | 12 | 5.3 | 160 | 25.5 |
| $3 \mathrm{He}\left(2^{3} \mathrm{He}+{ }^{4} \mathrm{He}\right)$ | 12 | 5.3 | 15 | 2.4 |
| 6 H | 9 | 4.0 | 30 | 4.8 |
| $\mathrm{Be}+\mathrm{He}$ | 6 | 2.6 | 17 | 2.7 |
| $\mathrm{~B}+\mathrm{H}$ | 1 | 0.4 | 12 | 1.9 |
| $\mathrm{Li}+3 \mathrm{H}$ | 1 | 0.4 | 2 | 0.3 |
| ${ }^{9} \mathrm{C}+\mathrm{n}$ | - | - | 30 | 4.8 |

## Identification of the isotopic composition of the fragments H and He


b)

Distribution of the fragments by value $\mathrm{p} \beta \mathrm{c}$ of the "white" stars ${ }^{10} \mathrm{C} \rightarrow 2 \mathrm{He}+2 \mathrm{H}$. ${ }^{3} \mathrm{He}$ fragments from events of fragmentation ${ }^{9} \mathrm{C} \rightarrow 3^{3} \mathrm{He}$ at 1.2 A GeV .


Distribution of the fragments of the polar of emission angle formed in the "white stars" ${ }^{10} \mathrm{C} \rightarrow 2 \boldsymbol{\alpha}+2 \boldsymbol{p}$. (dotted line - $p$, solid line $-\alpha$ fragments, curve the Rayleigh distribution)

## Distribution of opening angles of $\alpha$ fragments

$$
{ }^{10} \mathrm{C} \rightarrow 2 \alpha+2 p
$$

${ }^{9} \mathrm{Be} \rightarrow 2 \alpha+n$



$$
\begin{aligned}
<\Theta & >4.4 \pm 0.2 \text { мрад } \\
\sigma_{\Theta} & =2.1 \pm 0.2 \text { мрад }
\end{aligned}
$$



## Distribution of excitation energy $\left(Q_{2 \alpha}\right)$ defined for $\alpha$ pairs

 from events ${ }^{10} \mathrm{C} \rightarrow 2 \alpha+2 p$$$
\begin{aligned}
& M_{2 \alpha}=\left[2\left(m_{\alpha}^{2}+E_{\alpha 1} E_{\alpha 2}-p_{\alpha 1} p_{\alpha 2} \cos \left(\Theta_{12}\right)\right)\right]^{\frac{1}{2}} \\
& Q_{2 \alpha}=M_{2 \alpha}-2 \cdot m_{\alpha}
\end{aligned}
$$

$$
{ }^{10} \mathrm{C} \rightarrow 2 \alpha+2 p
$$

$$
{ }^{9} \mathrm{Be} \rightarrow 2 \alpha+n
$$




Distribution of excitation energy $\left(Q_{2 \alpha+p}\right)$ defined for triples $2 \alpha+p$ from events ${ }^{10} C \rightarrow 2 \alpha+2 p$

| ${ }^{10} \mathrm{C} \rightarrow 2 \alpha+2 p$ provided that $\mathrm{He}={ }^{4} \mathrm{He}, \mathrm{H}={ }^{1} \mathrm{H}$ | $M_{2 \alpha+p}^{2}=-\left[\sum P_{i}\right]^{2}$ |
| :--- | :--- |
| $M\left({ }^{9} \mathrm{~B}\right)-2 \cdot M\left({ }^{4} \mathrm{He}\right)-M\left({ }^{1} \mathrm{H}\right)=280 \kappa э \mathrm{~B}$ | $Q_{2 \alpha+p}=M_{2 \alpha+p}-2 \cdot m_{\alpha}-m_{p}$ |



$$
\begin{aligned}
& { }^{10} \mathrm{C} \rightarrow{ }^{9} \mathrm{~B}+\mathrm{p} \rightarrow \\
& { }^{8} \mathrm{Be}+2 \mathrm{p} \rightarrow 2 \alpha+2 \mathrm{p}
\end{aligned}
$$

$$
{ }^{10} \mathrm{C} \rightarrow{ }^{9} \mathrm{~B}+p \rightarrow{ }^{8} \mathrm{Be}+2 p \rightarrow 2 \alpha+2 p
$$



$$
\left.\sigma_{\mathrm{Pt}_{\mathrm{t}}}{ }^{9} \mathrm{~B}\right)=(92 \pm 15) \mathrm{MeV} / \mathrm{C}
$$

by the statistical model
$\left.\sigma_{\text {Pt }}{ }^{9} \mathrm{~B}\right)=93 \mathrm{MeV} / \mathrm{c}$
$\mathrm{P}_{\mathrm{T}(2 \alpha+\mathrm{p})}, \mathrm{MeV} / \mathrm{c}$


## Conclusions

$>$ First time was studied fragmentation of nuclei ${ }^{10} \mathrm{C}$ with energy 1.2 A GeV in a nuclear track emulsion, derived at the Nuclotron, JINR.
$>$ On the total length of viewing of primary traces of 1088.1 m was found 7241 inelastic interactions, including 608 "white" stars. The average range of nuclei ${ }^{10} \mathrm{C}$ was equal to $\lambda_{\mathrm{C}}=14.8 \pm 0.9 \mathrm{sm}$.
$>$ The main feature of the distribution by charge topology is that its main share, about $\sim 82 \%$ accounts for channel $2 \alpha+2$ p, as expected for the isotope ${ }^{10} \mathrm{C}$.
$>$ Identified the isotopic composition of fragments H and He for the leading channel. It is shown that the dominance of the isotopes ${ }^{1} \mathrm{H}$ and ${ }^{4} \mathrm{He}$ confirms the correctness of the formation of a beam of isotope ${ }^{10} \mathrm{C}$.
$>$ The process of fragmentation of nuclei ${ }^{10} \mathrm{C} \rightarrow 2 \alpha+2 \mathrm{p}$ in case ( $\approx 30 \%$ ) have a cascade character ${ }^{10} \mathrm{C} \rightarrow{ }^{9} \mathrm{~B} \rightarrow{ }^{8} \mathrm{Be}$ by analogy with the nucleus ${ }^{9} \mathrm{Be}$.

## Thank you for attention!

