

Fragmentation of relativistic nuclei ¹⁰C in a nuclear track emulsion

K.Z. Mamatkulov

XXII International Baldin Seminar on High Energy Physics Problems. JINR, Dubna. 19.09.2014

http://veksler.jinr.ru/becquerel/

≈ 10 cm

Nuclear track emulsion: 0.5 µm resolution

A micrograph one of the events of the nuclear fragmentations in the channel ${}^{10}C \rightarrow 2He + 2H$.

Irradiation of the emulsion in the beam nuclei Be, C and N with energy 1.2 A GeV

Amplitude spectrum from a scintillation counter, shows the positions of the peaks for nuclei with charges $Z_{pr} = 4, 6$ and 7

Determination of charge and mean-free path of beam particles in the emulsion N_{ev} Z = 4

- ➢ Viewed plates − 12 pcs.
- The total length of viewing of primary tracks 1088.1 m.
- ➢ Number of total events − 7241
- ➢ Number of events ("white stars") − 608

Distribution of tracks beam nuclei by the number of δ -electrons N_{δ} per 1 mm length of the tracks.

The average range $\lambda(A)$ for inelastic interactions depending on the mass of the projectile nuclei A; the curve - calculation by the ratio of Bradta Peters.

The observed fragmentation channels ¹⁰C nuclei ("White stars")

Channels (¹⁰ C)	N _{ws} =227	100%	N _{tf} =627	100%
2He+2H	186	81.9	361	57.6
He+4H	12	5.3	160	25.5
3He (2 ³ He + ⁴ He)	12	5.3	15	2.4
6H	9	4.0	30	4.8
Be + He	6	2.6	17	2.7
B+H	1	0.4	12	1.9
Li+3H	1	0.4	2	0.3
⁹ C+n	-	-	30	4.8

Identification of the isotopic composition of the fragments H and He

Distribution of the fragments by value p β c of the "white" stars ${}^{10}C \rightarrow 2He + 2H$. ³He fragments from events of fragmentation ${}^{9}C \rightarrow 3{}^{3}He$ at 1.2 *A* GeV.

Distribution of the fragments of the polar of emission angle formed in the "white stars" ${}^{10}C \rightarrow 2\alpha + 2p$. (dotted line - *p*, solid line - α fragments, curve - the Rayleigh distribution)

Distribution of opening angles of α **fragments**

 ${}^{10}\text{C} \rightarrow 2\alpha + 2p$ ${}^{9}\text{Be} \rightarrow 2\alpha + n$

$$^{10}C \rightarrow 2\alpha + 2p$$

 ${}^{9}Be \rightarrow 2\alpha + n$

Distribution of excitation energy $(Q_{2\alpha+p})$ defined for triples $2\alpha + p$ from events ${}^{10}C \rightarrow 2\alpha + 2p$

¹⁰*С*
$$\rightarrow$$
 2 α + 2 p provided that He=⁴He, H=¹H
 $M({}^{9}B) - 2 \cdot M({}^{4}He) - M({}^{1}H) = 280 \kappa \mathfrak{S}B$

$$M_{2\alpha+p}^{2} = -\left[\sum_{\alpha+p} P_{i}\right]^{2}$$
$$Q_{2\alpha+p} = M_{2\alpha+p} - 2 \cdot m_{\alpha} - m_{p}$$

Distribution of the opening angles between the fragments $\Theta_{\alpha p}$; dashed histogram distribution $\Theta_{\alpha p}$ with the formation ⁹B and ⁸Be.

Conclusions

- First time was studied fragmentation of nuclei ¹⁰C with energy 1.2 A GeV in a nuclear track emulsion, derived at the Nuclotron, JINR.
- ➤ On the total length of viewing of primary traces of 1088.1 m was found 7241 inelastic interactions, including 608 "white" stars. The average range of nuclei ¹⁰C was equal to $\lambda_{\rm C} = 14.8 \pm 0.9$ sm.
- The main feature of the distribution by charge topology is that its main share, about ~ 82% accounts for channel $2\alpha + 2p$, as expected for the isotope ¹⁰C.
- Identified the isotopic composition of fragments H and He for the leading channel. It is shown that the dominance of the isotopes ¹H and ⁴He confirms the correctness of the formation of a beam of isotope ¹⁰C.
- The process of fragmentation of nuclei ${}^{10}C \rightarrow 2\alpha + 2p$ in case ($\approx 30\%$) have a cascade character ${}^{10}C \rightarrow {}^{9}B \rightarrow {}^{8}Be$ by analogy with the nucleus ${}^{9}Be$.

Thank you for attention!