

XXII International Baldin Seminar on High Energy Physics Problems *Relativistic Nuclear Physics & Quantum Chromodynamics*

September 15-20, 2014, Dubna, Russia

Hyperfragments from Light p-shell Hypernuclei II. Recent Progress & next steps

> O. Majlingova Czech Technical University, Prague

L. Majling and P. Bydžovský Nuclear Physics Institute, Řež near Prague and P. Achenbach Institut für Kernphysik, J. Guttenberg-Universität, Mainz, Germany

Outline

O&L Majling

- Introduction Hypernuclei Domain
- Motivation
- Approach Shell model Extensions Cluster structure
- Suggestions

- Introduction
 - Hypernuclei
 - Domain
- 2 Motivation
- 3 Approach
 - Shell model
 - Extensions
 - Cluster structure

4 Suggestions

Hypernuclei

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

A very interesting phenomenon in nuclear physics is the existence of nuclei containing hyperon(Y)

(Λ-hyperon).

When hyperon replaces one of the nucleons(N=n or p) in the nucleus, the original nuclear structure can change to a bound system formed by

the hyperon and remaining nucleons.

Hypernuclei in Dubna

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

Podgoretski's JETP 17 ('63) ingenious idea to use the Strangeness Exchange Reaction ($\mathcal{K}_{in-flight}^{-}, \pi^{-}$) Now hypernuclei are **part of intermediate energy nuclear physics** (interactions of μ , π , K... with light nuclei)

Khorozov & Lukstins's NP A 547 (192) unique experiment: production of relativistic hypernuclei

Lukstins PAN **71** (2008) 2137 Studying of Hypernuclei in Nuclotron Beams identification ${}^{6}_{\Lambda}$ H; ${}^{10}_{\Lambda}$ B, ${}^{10}_{\Lambda}$ Be

NICA Program Kekelidze's Monday talk

International Hypernuclear Network ¹

¹Pochodzalla, Zakopane 2010

Sphere Network

SPHERE Network

O&L Majling

Introduction Hypernuclei Domain

Approach Shell model Extensions Cluster structure

Suggestions

Hadron Physics₂ Study of Strongly Interacting Matter SPHERE Network Strange Particles in Hadronic Environment Research in Europe coordinates studies of hypernuclei at FINUDA@DAΦNE (Frascati) KAOS@MAMI (Mainz) HypHI@GSI (Darmstadt) PANDA@FAIR extended by including J-PARC@Tokai and CEBAF@J-Lab close cooperation with Network LEANNIS : Low Energy Antikaon Nucleon and Nuclei Interaction Studies

Motivation

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

Experiment : Mainz Microtron MAMI-C :

- pionic decay of ⁴_ΛH in **electroproduction** process
- the possibility to identify hyperfragments in the reaction (e, e'K⁺):

$$e^{9} \operatorname{Be} \rightarrow^{9}_{\Lambda} \operatorname{Li} + K^{+}$$

$$(e + p \rightarrow \Lambda + K^+)$$

where Λ may be bound/unbound; unbound \rightarrow pick up few nucleons and forms hyperfragment Cluster structure of ⁹Be $\stackrel{?}{\Rightarrow}$ hyperfragment $^{4}_{\Lambda}$ H was really recognized

Is it possible to estimate yield of other hyperfragments?

"Particle-hole" excitation : Shell model

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

Example : closed shell nuclei ¹⁶N : F. Cusanno *et al.*, PRL **103**, 202501 (2009)

Example : Spectrum of ⁹_ABe

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

Deciphering spectrum of $^{9}_{\Lambda}$ Be

O&L Majling

- Introduction Hypernuclei Domain
- Motivatior
- Approach Shell model Extensions Cluster structure
- Suggestions

"Our" hypernucleus: ${}^{9}Be(e, e'K^{+})^{9}_{\Lambda}Li$

O&L Majling

- Introduction Hypernuclei Domain
- Motivation
- Approach Shell model Extensions Cluster structure
- Suggestions

Shell Model - 1

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

Seminal papers:

Gal, Soper, Dalitz, AP **63** (1971), **72** (1972) **113** (1978) $\Psi(^{A+1}_{\Lambda}Z) = \Psi(^{A}Z) \cdot \psi^{\Lambda}$ "weak coupling"

for *p*-shell hypernuclei: $|s^4 p^{A-4} : J^{\pi}_A T_A \otimes s_{\Lambda} : J >$

Cohen Kurath,

Discrete part of spectra ($0\hbar\omega$ excitations) : Millener, Lecture Notes in Physics, vol. 724, 2007, Springer

Shell Model 1

O&L Majlin

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

.

REMINDER 1:

L S coupling

$$|p^k: ETJ > = \sum lpha {ETJ \ fLS} |p^k: [f]T(SL)J >$$

- [f]: permutation group
- α intermediate coupling:

Cohen & Kurath; Barker; Boyarkina; ...

$$|p^{k}:[f]TSL >= |p^{k}:[f](\lambda\mu)L > \cdot |(\underbrace{\frac{1}{2}\frac{1}{2}}_{\tau})^{k}:[\bar{f}]TS >$$

Shell Model 1

DEMINIDED 2.

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

Fractional parentage decomposition - one particle

$$|p^{k}: [f](\lambda\mu)TSL >=$$

$$\sum \sqrt{\frac{nf'}{nf}} g_{\ell} g_{ST} \cdot |p^{k-1}: [f'](\lambda\mu)'T'S'L' > \cdot |p >$$

$$g_{\ell} \equiv$$

$$< p^{k-1}(\lambda\mu)'L'; p|p^{k}(\lambda\mu)L >= \begin{pmatrix} (\lambda\mu)' & (10) & | & (\lambda\mu) \\ L' & 1 & | & L \end{pmatrix}$$

$$g_{ST} \equiv$$

$$< \tau^{k-1}[\bar{f}]'T'S'; \tau |\tau^{k}[\bar{f}]TS >= \begin{pmatrix} [\bar{f'}] & [\bar{1}] & | & [\bar{f}] \\ T'S' & \frac{11}{22} & | & TS \end{pmatrix}$$
SU(3), SU(4) Clebsch Gordan Coefficients

Shell Model - 2

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

EXCITED nuclear states : no core shell model $|0s^{ks}[f_s]; 1p^{kp}[f_p]; \ell^{k\ell}[f_\ell]: [f]TS (\lambda\mu)L : J >$ SU(4) SU(3)*Wigner Elliott* ('58)

> constrain : $ks + kp + k\ell = A$ notation : $\ell = 2d, 2s;$ 3f, 3p; ...

Shell Model - 2

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

TRANSLATION INVARIANT SM

First step - rewriting

$$|p^{kp}[f_p]: [f_p]LST >$$

 $|s^4[4]; p^{kp}[f_p]: [f_A] = [4f_p], LST > \cdot \Psi_0(R_A)$
CM

Young tableaux [f]

O&L Majling

- Introduction Hypernuclei Domain
- Motivation
- Approach Shell model Extensions Cluster structure
- Suggestions

Wave functions are classified with Young tableaux [*f*] Incorporating clusters in shell model: Cluster structure – labeled by Young tableaux: $d: s^2 [2] ({}^3_{\Lambda}H: |s^2 s_{\Lambda})$ $t: s^3 [3] ({}^4_{\Lambda}H: |s^3 s_{\Lambda})$ $\alpha: s^4 [4]$

Excited states of *p*-shell nuclei

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

$0\hbar\omega_{N}\left(k ight)$:			
$ 0s^{4}[4] 1p^{k}[f_{p}]$		$: [f_{\mathcal{A}}] (\lambda \mu) > = [f_{\mathcal{A}}] = [4f_{\mathcal{D}}]$	$\Phi_k^{(A)}[f_A](\lambda\mu)\cdot\Psi_0(R_A)$
$1\hbar\omega_N\left(k+1 ight)$:			
$ 0s^4[4] \ 1p^{k-1}[f_p]$	2 <i>d</i> [1]	$[f_{A}](\lambda\mu) > 1$	$\Phi_k^{(A)}[f_A](\lambda\mu)\cdot\Psi_1(R_A)$
$ 0s^{3}[3] 1p^{k+1}[f'_{p}]$		$[f_{A}](\lambda\mu) > \int$	$\Phi_{k+1}^{(A)}[f_A](\lambda\mu)\cdot\Psi_0(R_A)$
		$[f_A] = [4f_p], \ [3f_B]$	5]
$2\hbar\omega_N~(k+2)$:		,	
$ 0s^4[4] \ 1p^{k-1}[f_p]$	3 <i>f</i> [1]	: [f_A] ($\lambda\mu$) >	$\Phi_k^{(A)}[f_A](\lambda\mu)\cdot\Psi_2(R_A)$
$ 0s^4[4] \ 1p^{k-2}[f'_p]$	$2d^{2}[f_{d}]$: [f_A] ($\lambda\mu$) >	$\Phi_k^{(A)}[f_A](\lambda\mu)\cdot\Psi_2(R_A)$
$ 0s^{3}[3] 1p^{k} [f_{p}^{\prime\prime}]$	2 <i>d</i> [1]	: [f_{A}] ($\lambda\mu$) >	$\Phi_{k+1}^{(A)}[f_A](\lambda\mu)\cdot\Psi_1(R_A)$
$ 0s^{2}[2] 1p^{k+2}[f_{p}'''] $: [f_{A}] ($\lambda\mu$) >	$\Phi_{k+2}^{(A)}[f_{A}](\lambda\mu)\cdot\Psi_{0}(R_{A})$
		$[f_A] = [4f_p], \ [3f_B]$	ζ], [2 f ^{''} _ρ]

⁴He

O&L Majling

- Introduction Hypernuclei Domain
- Motivation
- Approach Shell model Extensions Cluster structure
- Suggestions

Due to NON-CENTRAL forces, the w.f. for the ${}^{4}\text{He} J^{\pi} = 0^{+} \text{ g.s.}$ is a mixture of ${}^{1}S_{0}$, ${}^{3}P_{0}$ and ${}^{5}D_{0}$ states

Recent calculations:

ref.	interaction	$^{11}S_{0}$	¹³ P ₀	${}^{15}D_0$
[1]	AV8':	85.7 %	0.4 %	13.9 %
[2]	AV18 + UIX:	83.2 %	0.8 %	16.0 %

 K. Kamada *et al.* PR C 64, 044001 ('01) Benchmark test calculation of a 4N bound state
 A. Nogga *et al.*: PR C 65, 054003 ('02)

. α particle based on modern forces

in SHELL MODEL: ${}^{15}D_0 : |0s^2 \ 1p^2 : [22] >$

Excited states of *p*-shell HYPERNUCLEI:

O&L Majling

Introduction Hypernuclei Domain Motivation Approach Shell model Extensions Cluster structure

Suggestions

 $: \hbar\omega_k + \hbar\omega_h$ ħω $\Phi^{(A)}_{\nu}\cdot\varphi^{\Lambda}_{\Omega}(R_{A}-r_{\Lambda})$ $(\varphi_0^{\Lambda} \equiv 0 s_{\underline{1}}^{\Lambda})$ 0 0 + 0 $\Phi^{(A)}_{\iota} \cdot \varphi^{\Lambda}_{1}$ $(\varphi_1^{\Lambda} \equiv 1 p_{\frac{3}{2}}^{\Lambda}, \ 1 p_{\frac{1}{2}}^{\Lambda})$ 0 + 11 $\Phi_{k+1}^{(A)} \cdot \varphi_0^{\Lambda}$ 1 + 0 $\Phi_{k}^{(A)} \cdot \varphi_{2}^{\Lambda}$ $(\varphi_2^{\Lambda}\equiv 2d_{\frac{5}{2}}^{\Lambda},\ 2d_{\frac{3}{2}}^{\Lambda},\ 2s_{\frac{1}{2}}^{\Lambda})$ 2 0 + 2 $\Phi_{k+1}^{(A)} \cdot \varphi_1^{\Lambda}$ 1 + 1 $\Phi_{k+2}^{(A)} \cdot \varphi_0^{\Lambda}$ 2 + 0

Example : structure $^{7}_{\Lambda}$ He

$\cap 2$	1 N	Ani	linc
Uα		/iaj	mine

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

N	⁶ He	$\Phi_N^{(6)}$	[<i>f</i> ₆]				⁷ ∧He	
2	s ⁴ p ²	$\Phi_2^{(6)}$	[42],			s_{Λ}	p_{Λ}	d_{Λ}
3	s ⁴ p d	$\Phi_3^{(6)}$	[42] ,				s_{Λ}	p_{Λ}
3	s ³ p ³	Φ ₃ ⁽⁶⁾	[42] ,	[<mark>3</mark> 3],			s_{\wedge}	p_{Λ}
4	s ⁴ p f	$\Phi_{4}^{(6)}$	[42],					s_{Λ}
4	$s^4 d^2$	$\Phi_{4}^{(6)}$	[42] ,					s_{\wedge}
4	s³ p² d	$\Phi_{4}^{(6)}$	[42],	[33],				s_{\wedge}
4	<mark>s</mark> ² p ⁴	$\Phi_{4}^{(6)}$	[42],	[33],	[<mark>2</mark> 22]			s_{Λ}

Spectrum of $^{6}_{\Lambda}$ Li

deciphering:

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

$^{6}_{\Lambda}$ Li - discussion

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

In Phys. Lett. B **92** 256 (1980) we have discussed hypernucleus $^{6}_{\Lambda}\text{Li}$ in terms of an

extended supermultiplet scheme

which combines the 1*s* and 1*p* orbitals, and classifies the nuclear and Λ - hypernuclear states by Young tableaux [*f*].

The lower state has symmetry [41] for its nuclear core, so its break-up to ${}^{5}_{\Lambda}\text{He}+p$ or to ${}^{5}\text{Li}+\Lambda$ is ALLOWED both energetically and by supermultiplet symmetry.

The upper state has symmetry [32] for its nuclear core so that its decay to ${}^{5}\text{Li} + \Lambda$ or ${}^{5}_{\Lambda}\text{He} + p$, is FORBIDDEN by the selection rules for the supermultiplet symmetry.

ALLOWED : ${}^{4}_{\Lambda}H+2p$, ${}^{4}_{\Lambda}He+d$, ${}^{3}_{\Lambda}H+t$

Cluster wave function in Shell Model

O&L Majling

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure $\Phi_{N}^{(A)}[f](\lambda\mu) LST =$ $\sum \sqrt{\frac{n_{f'} \cdot n_{f'}}{n_{f}}} GL_{(\lambda\mu)',(\lambda\mu)''}^{(\lambda\mu)} GT_{[f'],[f'']}^{[f]}$ $\phi_{n'}^{(a)}[f'](\lambda\mu)' \cdot \phi_{n''}^{(b)}[f''](\lambda\mu)'' \cdot \varphi_{\nu}(r_{a,b})$

GL, (GT) - orbital (spin-isospin) c.f.p. = recoupling coeffcients for SU(3) and SU(4) group

with obvious constrains :

$$n' + n'' + \nu = N$$

 $[f'] + [f''] = [f]$
 $(\lambda \mu)' + (\lambda \mu)'' + (\nu 0) = (\lambda \mu)$

A = a + b

Hyper FRAGMENTS

- Introduction Hypernuclei Domain
- Motivation
- Approach Shell model Extensions Cluster structure

Transformation of Jacobi coordinates:

 $< \varphi_{\nu}(\mathbf{r}_{ab}) \varphi_{0}^{\Lambda}(\mathbf{r}_{ab,\Lambda}) \mid \varphi_{0}(\mathbf{r}_{b,\Lambda}) \varphi_{\nu}(\mathbf{r}_{a,b\Lambda}) > = (\frac{m_{A}+1}{m_{A}}\frac{m_{b}}{m_{b}+1})^{\frac{\nu}{2}}$

Hyperfragments from $^{7}_{\Lambda}$ He

<u></u>	1 N	Ani	line
Uα	L I\		IIIIU

Introduction Hypernuclei Domain

Motivation

Approach Shell model Extensions Cluster structure

Suggestions

$\rm E_{th}$			[<i>f_c</i>]
2.82	6∧He	+ n	[41]
3.08	$^{5}_{\Lambda}$ He	+ 2 <i>n</i>	[4]
5.23	⁶ He	$+\Lambda$	[42]
6.95	⁵ He	$+ \Lambda n$	[41]
15.49	$^4_{\Lambda} \mathbf{H}$	+ <i>t</i>	[3]
21.41	$^4_{\Lambda}{ m He}$	+ 3 <i>n</i>	[3]
23.66	$^3_{\Lambda}$ H	+ t n	[2]

Hyperfragments from $^{9}_{\Lambda}$ Li

	E_{thr}	decay		$[f_i][f_k]$	$T_1 T_2$	
0&L Majling	3.7	п	+	⁸ ⊥i	[43][1]	$\frac{1}{2}\frac{1}{2}$
	8.5	⁸ Li	+	Λ	[431]	10
	9.7	t	+	⁶ ∧He	[3][41]	$\frac{1}{2}\frac{1}{2}$
	9.9	tn	+	↓ 5⁄He	[3][1][4]	$\frac{1}{2}\frac{1}{2}0$
uster structure	11.8	⁵ He	+	$^{4}_{\Lambda}$ H	[41][3]	$\frac{1}{2}\frac{1}{2}$
	12.2	2 <i>n</i>	+	7∧Li	[2][42]	10
	13.0	d	+	⁷ ∧He	[2][42]	01
	13.8	р	+	⁸ ∧He	[1][421]	$\frac{1}{2}\frac{3}{2}$
	18.2	⁶ He	+	$^3_{\Lambda}$ H	[42][2]	10
	31.5	tnn	+	⁴ ∧He	[3][1][1][3]	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
	38.5	³ He	+	$^{6}_{\Lambda}$ H	[3][32]	$\frac{1}{2}\frac{3}{2}$

SUGGESTIONS & OUTLOOK

O&L Majling

- Introduction Hypernuclei Domain
- Motivation
- Approach Shell model Extensions Cluster structure

Suggestions

Some SUGGESTIONS for next steps:

- see for ${}^{4}_{\Lambda}$ H in other *p*-shell targets;
- see for ${}^{3}_{\Lambda}$ H in *p*-shell targets;
- ⁷Li is a source of ${}^{6}_{\Lambda}$ H hyperfragment.

OUTLOOK

Calculation of ratio

 $Y(^{6}_{\Lambda}H)$: $Y(^{3}_{\Lambda}H)$: $Y(^{4}_{\Lambda}H)$

THANK YOU!