
y

FIELD-THEORETICAL
ELECTRON-PROTON

SCATTERING AMPLITUDE IN
THE COULOMB AND LORENTZ

GAUGES

Alexander Machavariani

Contact e-mail: machavar@jinr.ru



CONTENT

[•] 3D field-theoretical relativistic equations
for the ep system with the on mass shell

protons.

[••] Analytic and exact reproduction of the
One Photon Exchange leading ep potential

through the equal-time canonical
commutation relations.

[• • •] Analytic and exact relationship
between the 3D field-theoretical relativistic

equations in the Coulomb and Lorentz gauges
with the same quantization rules.

[• • ••] Haag-Nishijima-Zimmermann
quantum field theory of the hadrons as quark

bound (composite) states.
Suggested field equations with on mass shell
protons for ep scattering with and without

quark-gluon degrees of freedom.

[⊙] Conclusion



Standard 3D time-ordered field theoretical S-
matrix approach

Se′N ′,eN =< in;p′e,p
′
N |pe,pN ; in >

+i(2π)4δ(pe + pN − p′e − p′N )Ae′N ′,eN

Ae′N ′,eN =< out;p′N |ηp′e(0)|pe,pN ; in >

Both protons and e are on mass shell inAe′N ′,eN .

ηp′e
(x) = u(p′e)η(x)

b+pe(in) = b+pe(0)−
∫

d4xeip
′
exθ(−xo)η(x)u(pe)

Ae′N ′,eN =< p′N |{ηp′e(0), b
+
pe(0)}|pN > −

i
∫

d4xe−ipexθ(−xo) < p′N |{ηp′e(0), ηpe(x))}|pN >



Ae′N ′,eN =< p′N |{ηp′e(0), b
+
pe(0)}|pN > −

i
∫

d4xe−ipexθ(−xo) < p′N |{ηp′e(0), ηpe(x))}|pN >

Both protons are on mass shell in Ae′N ′,eN .

∑

n
|n; in >< in;n| = 1

Ae′N ′,eN =< p′N |{ηp′e(0), b
+
pe(0)}|pN >

+
∑

n
Ae′N ′,n

(2π)3δ(Pn − pe − pN)

Epe + EpN − P on + iǫ
A+
n,eN

+
∑

m
AN ′,em

(2π)3δ(Pm + pe − p′N)

Epe − Ep′N
+ P om

A+
N,e′m

Ae′N ′,n =< p′N |ηp′e(0)|n; in >; n = H, ep, epγ, ...

A+
N,e′m =< in;m|ηp′e(0)|pN ; in >; m = ep, eγp...

Ep′e
=

√

√

√

√m2
e + p′2e; Ep′N

=
√

√

√

√M2 + p′2e



• General field theoretical completeness con-
dition for ep → ep with any number of the
intermediate particles n.

• Generalized Low type equations for the ep
scattering

• Matrix representation of the Bogoljubov-
Medvedev-Polivanov equations
• Spectral decomposition ofAe+p→e′+p′ over
the complete set asymptotic states
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PotentialWe+p→e′+p′ with the off mass
shell external electrons: (A) s-channel
γeN exchange. (B), (C) Parts with
the intermediate amplitude ep − epγ

(D), (H) Z-diagrams with intermedi-
ate antinucleon (E), (F), (G) Anti-
electron exchange parts
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We+p→e′+p′ with the off mass shell ex-
ternal electrons: • nucleons are on
mass shell. • Proton vertex correction
are included in γ∗pp vertex.(Equal-time
term). • Self-energy terms do not ap-
pear. • electron vertex correction are
included in (B) and (C).
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PotentialWe+p→e′+p′ with the off mass
shell external electrons: the time-ordered
3D diagrams. Complete set of the
next of the leading order terms ∼ α4.



Linearization:

We′N ′,eN = Ae′N ′,eN+(Ep′e
+Ep′N

)Be′N ′,eN

Linear energy depending potential

Ue′N ′,eN (E) =< p′N |{ηp′e(0), b
+
pe(0)}|pN > +

Ae′N ′,eN + E Be′N ′,eN

Final 3D relativistic Lippmann-Schwinger-type
equation

Te′N ′,eN (E) = Ue′N ′,eN (E)

+
∑

e”N”
Ue′N ′,e”N”(E)go(E)Te”N”,eN (E)

go =
(2π)3δ(p′e + p′N − pe − pN)

Epe + EpN − E + iǫ

Te′N ′,eN (E = Ep′e
+ Ep′N

) = Ae′N ′,eN =

< out;p′N |ηp′e(0)|pe,pN ; in >



Equal-time commutators and One Photon Ex-
change (OPE) Usual canonical quantization

of the four independent photon components

Ye′N ′,eN =< out;p′N |{ηp′e(0), b
+
pe(0)}|pN ; in >

[
o
Aµ(xo,x), Aν(xo,y)] = igµνδ(x− y)

{ψα(xo,x), ψ
+
β (xo,y)} = δαβδ(x− y)

b+pe(xo) =
∫

d3xe−ipexψe(x)γou(pe)

ηe(x) = eγµψe(x)Aµ(x)

Ye′N ′,eN = eu(p′e)γµu(pe) < out;p′N |Aµ(0)|pN ; in

Jµ(x) = ✷Aµ(x) = eψe(x)γ
µψe(x)+eψN (x)γµψN (x

Ye′N ′,eN = eu(p′e)γµu(pe)
< out;p′N |Jµ(0)|pN ; in >

tN



Ye′N ′,eN = eu(p′e)γµu(pe)
< out;p′N |Jµ(0)|pN ; in >

tN

tN = (poN
′−poN )2− (p′N − pN)2 OPE term

�

γ∗

P

el

P ′

el′

Figure 1: One photon exchange VOPE ≡
Ye′N ′,eN .



Gauge Condition and quantization rules are
independent.

Coulomb gauge: only transverse components
are quantized

Lorentz gauge: USUALLY all four compo-
nents of Aµ(x) are independent and quantized
Gupta-Bleuer indefinite metric, additional con-
ditions,....
We shall consider Lorentz gauge + quan-
tization of the transverse part of Aµ(x)



Coulomb gauge:

∂ACi (x)

∂xi
= 0; i = 1, 2, 3

(iγµ
∂

∂xµ
−me)ψe(x) = η(x) = eγµACµ (x)ψe(x)

✷xA
C
i(x) = J tri (x) = Ji(x)−

∂

∂xi
∂Jk(x)

∂xk

Poisson eq. (Nonlocality is generated by

Coulomb energy)

−∆ACo(x) ≡ −
∂

∂xi
∂ACo(x)

∂xi
= Joi (x)

ACo (x) =
∫ dx′Jo(xo,x

′)

4π|x− x′|

ACo (x) is defined via Jo(x) = eψ(x)γoψ(x)

[
∂ACi (xo,x)

∂xo
, ACj (xo,y)] =

δijδ(x− y)−
1

∆

∂2

∂xi∂yj

1

|x− y|



Ye′N ′,eN =< out;p′N |{ηp′e(0), b
+
pe(0)}|pN ; in >

Ye′N ′,eN = Y CI + Y CII

OPE in Coulomb gauge:

Y CI =
eu(p′e)γ

ou(pe)

−(p′N − pN)2
< p′N |J tro (0)|pN >

−eu(p′e)γ
iu(pe)

1

tN
< p′N |J tri (0)|pN >

Second nonlocal part is generated by [ACµ=o(0), ψ
+(0,

Y CII = −eu(p′e)γ
o ∫ dx′

4π|x′|

< p′N |ψ+e (0,x
′)ψe(0, 0)|pN > u(pe)

Y CII is generated by the Poisson relation i.e.
definition of ACo (x) via Jo(x).
This follows from the Electro-static (Coulomb)
interaction Nonlocal interaction
Y CII is next of the leading order over α2



Lorentz gauge + quantization of the trans-
verse part of Aµ(x)

∂ALµ(x)

∂xµ
= 0; µ = 0, 1, 2, 3

✷xA
Ltr
i (x) = Ji(x) = eΨLe (x)γiΨ

L
e (x); i = 1, 2

AL3(x) = ✷
−1
x J3(x); J3(x) = eΨLe (x)γ3Ψ

L
e (x)

ALo(x) = ✷
−1
x Jo(x); Jo(x) = eΨLe (x)γoΨ

L
e (x)

(AL)
tr
i (x) = (AL)i(x)−

∂

∂xi
∂(AL)

k
(x)

∂xk

(AL)
l
i(x) =

∂

∂xi
∂(AL)

k
(x)

∂xk

[
∂(AL)tri (xo,x)

∂xo
, (AL)trj (xo,y)] =

δijδ(x− y)−
1

∆

∂2

∂xi∂yj

1

|x− y|



Relationship between Lorentz and Coulomb
gauges

(iγµ
∂

∂xµ
−me)ψ

L
e (x) = eγµALµ(x)ψ

L
e (x)

l l l

(iγµ
∂

∂xµ
−me)ψ

C
e (x) == eγµACµ (x)ψ

C
e (x)

ψCe (x) = eieλ(x)ψLe (x)

ACµ (x) = e−ieλ(x)ALµ(x)e
ieλ(x) +

∂λ(x)

∂xµ

e−ieλ(x)ALµ(x)e
ieλ(x) = ALµ(x) + ie[ALµ, λ]

+ie[ie[ALµ , λ], λ] + ... ≡ ALµ(x) +D(ALµ , λ)

If λ is determined through the relations

D(ALµ , λ) +
∂λ(x)

∂xµ
= +

1

∆

∂

∂xµ

∂ao(x)

∂xo
= 0

then



ACµ (x) = ALµ(x)−
1

∆

∂

∂xµ

∂ALo(x)

∂xo

−∆ACo = ✷ALo = Jo(x)

∂ACi (x)

∂xi
= 0

ACi (x) is the photon field in the Coulomb
gauge

< p′N |ALµ=1,2(0)|pN >=< p′N |ACµ=1,2(0)|pN >

< p′N |ALo(0)|pN >=
tN < p′N |ACo(0)|pN >

−(p′N − pN)2



Nucleon as three quark bound (cluster) state
R. Haag, Phys. Rev. 112 (1958)
K. Nishijima, Phys. Rev. 111 (1958)
W. Zimmermann, Nuovo Cim. 10 (1958)
K. Huang and H. A. Weldon, Phys. Rev.
D11 (1975) 257.

Construction of the cluster (bound) state asymp-
totic crearion annihilation) operator

Bin(out)(p) =
weekly
lim

X0→−∞(+∞)
Bp(X

0),

Bp(X
0) =

∫

d3X exp (ipX)u(p)γ0Υp(X)

with canonical quantization of asymptotic fields

{Bin(out)
†
(p),Bin(out)(p′)} = δ(p− p)

{B†
p(0),Bp′(0)} 6= δ(p− p′)

THIS IS NOT a NONLOCAL QFT



Jacobi four-coordinates

ρ12 = x1 − x2

ρ3 =
m1x1 +m2x2

m1 +m2
− x3

X =
m1x1 +m2x2 +m3x3

m1 +m2 +m3
,

Υp(X) =
∫

d4ρ12d
4ρ3χ

†
p(X = 0, ρ12, ρ3)

T (q1(x1)q2(x2)q3(x3)).

χ†p(x1, x2, x3) =< pN |T (q1(x1)q2(x2)q3(x3))|0 >



The leading term in the formulations with off
shell nucleons and on shell electrons

Ye′N ′,eN =< out;p′e|{Jp′N
(0), B+

pN
(0)}|pe; in >

Jp′N
(X) = (iγµ

∂

∂Xµ
−mN )Υp(X)
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Figure 2: ep scattering amplitude with off
mass shell nucleons and on shell elec-
trons. Other kind set of the complete-
ness condition
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Figure 3: The leading terms of ep scattering
amplitude calculated in the canoni-
cal equal-time commutation relations
within QCD.

Quark-gluon degrees of freedom are
included in the pγ−p′ form factors be-
cause proton in the present formula-
tion with and without quark degrees
of freedom are ON Mass Shell



• Propagation of the quark and glu-
ons in the intermediate states does
not contribute into the completeness
and unitarity conditions with hadrons
and leptons.

• Completeness and unitarity in the
hadron sector ensure separation of the
quark and hadron degrees of freedom

•Unitarity allows to avoid the double-
counting

• The form of the 3D equations with
and without quarks are the same. in
equations with and without quark de-
grees of freedom.



Conclusion

♣ New three dimensional field
theoretical equations for the unified
description of the Hydrogen-like sys-
tems and the lepton-nucleon scatter-
ing is suggested.

♣ The exact coupling between the
ep scattering potentials in the Lorentz
and Coulomb gauges is obtained us-
ing the gauge transformation of the
Heisenberg electron fields

ψLorentz(x) = eλ(x)ψCoulomb(x)

♣ It is demonstrated, that the
ep potential in the Coulomb gauge is
much more transparent, simpler and
convenient as in the Lorentz gauge.



♣ Unlike to the Bethe-Salpeter
equations and their quasipotential re-
ductions, the potential of the present
equation is constructed from the one
variable form factors

♣ The leading Born term of these
equation is generated by the equal-
time canonical commutators, which pro-
duces also the non-local next of the
leading order terms.

♣ In the present 3D approach
are exactly separated the positron de-
grees of freedom.


