Nucleon structure in light-front quark model constrained by AdS/QCD

Valery Lyubovitsky

Institut für Theoretische Physik, Universität Tübingen Kepler Center for Astro and Particle Physics, Germany

in collaboration with

Thomas Gutsche Ivan Schmidt Alfredo Vega Werner Vogelsang *based on* PRD 80, 82, 83, 85, 86, 89 (2009-2014)

ISHEPP-XXII, September 15-20, 2014, JINR, Dubna

Nucleon structure

parton distributions (PDFs) generalized parton distributions (GPDs) form factors (FFs)

- Current and future Experiments
 BNL, CERN, DESY, GSI, JINR, JLab, Electron Ion Collider (EIC) . . .
- Many theoretical approaches pQCD, Lattice, QCD sum rules, ChPT, different types of quark models (from naive quark model to Schwinger-Dyson/Bethe-Salpeter approaches)
- AdS/QCD = Holographic QCD (HQCD) approximation to QCD: attempt to model Hadronic Physics in terms of fields/strings living in extra dimensions – anti-de Sitter (AdS) space
- HQCD models reproduce main features of QCD at low and high energies: chiral symmetry, confinement, power scaling of hadron form factors

AdS metric Poincaré form

$$ds^2 = g_{MN}(z) dx^M dx^N = \frac{R^2}{z^2} \left(dx_\mu dx^\mu - dz^2 \right)$$
 where R – AdS radius

- Metric Tensor $g_{MN}(z) = \epsilon^a_M(z) \epsilon^b_N(z) \eta_{ab}$
- Vielbein $\epsilon^a_M(z) = \frac{R}{z} \, \delta^a_M$ (relates AdS and Lorentz metric)
- Manifestly scale-invariant $x \to \lambda x$, $z \to \lambda z$.
- z extra dimensional (holographic) coordinate; <math>z = 0 is UV boundary
- Five Dimensions: L = Length, W = Width, H = Height, T = Time, S = Scale

• Action for scalar field

$$S_{\Phi} = \frac{1}{2} \int d^4x dz \sqrt{g} e^{-\varphi(z)} \left(\partial_M \Phi(x, z) \partial^M \Phi(x, z) - m^2 \Phi^2(x, z) \right)$$

- Dilaton field $\varphi(z) = \kappa^2 z^2$ gravitational background field providing breaking of conformal symmetry and confinement
- $g = |\det g_{MN}|$
- m-5d mass, $m^2R^2 = \Delta(\Delta-4)$, $\Delta=3$ is conformal dimension
- Kaluza-Klein (KK) expansion $\Phi(x, z) = \sum_{n} \phi_n(x) \Phi_n(z)$
- Tower of KK modes $\phi_n(x)$ dual to 4-dimensional fields describing hadrons
- Bulk profiles $\Phi_n(z)$ dual to hadronic wave functions

- Put on mass-shell $-\partial_{\mu}\partial^{\mu}\phi_n(x) = M_n^2\phi_n(x)$
- Substitute

$$\Phi_n(z) = \left(\frac{R}{z}\right)^{-3} \phi_n(z)$$

- Identify $\Delta = \tau = N + L$ (here N = 2 number of partons in meson) $\left[-\frac{d^2}{dz^2} + \frac{4L^2 - 1}{4z^2} + \kappa^4 z^2 - 2\kappa^2 \right] \phi_n(z) = M_n^2 \phi_n(z)$
- Solutions: $\phi_{nL}(z) = \sqrt{\frac{2\Gamma(n+1)}{\Gamma(n+L+1)}} \kappa^{L+1} z^{L+1/2} e^{-\kappa^2 z^2/2} L_n^L(\kappa^2 z^2)$
- $M_{nL}^2 = 4\kappa^2 \left(n + \frac{L}{2}\right)$
- Massless pion $M_{\pi}^2 = 0$ for n = L = 0 Brodsky, Téramond
- Extension to higger spins $M_{nLJ}^2 = 4\kappa^2 \left(n + \frac{L+J}{2}\right) \sim 4\kappa^2 (n+J)$ at large J Brodsky, Téramond, Lyubovitskij, Gutsche, Schmidt, Vega

• Scattering problem for AdS field gives information about propagation of external field from z to the boundary z = 0 — bulk-to-boundary propagator $\Phi_{\text{ext}}(q, z)$ [Fourier-trasform of AdS field $\Phi_{\text{ext}}(x, z)$]:

$$\Phi_{\rm ext}(q,z) = \int d^d x e^{-iqx} \Phi_{\rm ext}(x,z)$$

• Equation of motion
$$\partial_z \left(\frac{e^{-\varphi(z)}}{z} \partial_z \Phi_{\text{ext}}(q,z) \right) + q^2 \frac{e^{-\varphi(z)}}{z} \Phi_{\text{ext}}(q,z) = 0.$$

- Solution in Euclidean space $Q^2 = -q^2$ $\Phi_{\text{ext}}(Q, z) = \Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right) U\left(\frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2\right)$
- Hadron form factors

$$F_{n\tau}(Q^2) = \int_0^\infty dz \Phi_{\text{ext}}(Q, z) \phi_{n\tau}^2(z)$$

 Hadron structure is implemented by a nontrivial dependence of AdS fields on 5-th (holographic) coordinate

Master formula for PDFs, GPDs, FFs

FF
$$F_{\tau}(Q^2) = \int_{0}^{1} dx H_{\tau}(x, Q^2)$$

GPD
$$H_{\tau}(x, Q^2) = \underbrace{(1-x)^{\tau-2}}_{=q_{\tau}(x)} \exp\left(-\frac{Q^2}{4\kappa^2} \log(1/x)\right)$$

PDF $q_{\tau}(x) = (1-x)^{\tau-2}$

 Consistent with quark counting rules Matveev-Muradyan-Tavkhelidze-Brodsky-Farrar

$$F_{\tau}(Q^2) = \frac{\Gamma(\frac{Q^2}{4\kappa^2} + 1) \Gamma(\tau)}{\Gamma(\frac{Q^2}{4\kappa^2} + \tau)} \sim \frac{1}{(Q^2)^{\tau - 2}} \quad \text{at large } Q^2 \to \infty$$

•
$$F_{\tau=2}(Q^2) \sim \frac{1}{Q^2}$$
 for mesons, $F_{\tau=3}(Q^2) \sim \frac{1}{Q^4}$ for baryons

- Matching to Light-Front QCD using Drell-Yan-West formula $F_{\tau}(Q^2) = \int_{0}^{1} dx \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \psi_{\tau}^{\dagger}(x, \mathbf{k}'_{\perp}) \psi_{\tau}(x, \mathbf{k}_{\perp})$ where $\mathbf{k}'_{\perp} = \mathbf{k}_{\perp} + (1 - x)\mathbf{q}_{\perp}$ and $Q^2 = \mathbf{q}^2_{\perp}$
- Result of matching

$$\psi_{\tau}(x, \mathbf{k}_{\perp}) = N_{\tau} \, \frac{4\pi}{\kappa} \, \sqrt{\log(1/x)} (1-x)^{\frac{\tau-4}{2}} \, \exp\left[-\frac{\mathbf{k}_{\perp}^2}{2\kappa^2} \, \frac{\log(1/x)}{(1-x)^2}\right]$$

where $N_{\tau} = \sqrt{\tau-1}$

- For $\tau = 2$ first done by Brodsky, Téramond
- Matching at the initial scale $\mu_0 \sim 1$ GeV (hard and soft evolutions neglected)
- Derived LFWF is not symmetric under the exchange $x \rightarrow 1 x$

Extracted from matching matrix element of bare electromagnetic current between dressed LFWF in LF QCD and matrix element of the dressed electromagnetic current between hadronic WF in AdS/QCD

Light-front wave functions (LFWFs)

• Brodsky-Huang-Lepage prescription for two partonic bound state $\psi(x, \mathbf{k}_{\perp}) \sim \exp\left(-\frac{\mathbf{k}_{\perp}^2}{\lambda^2 x(1-x)}\right)$ where λ is scale parameter

- Different forms, 3 quark and quark-diquark structures
- Normally analysis of form factors start from parametrization GDPs

See e.g. Guidal-Polyakov-Radyushkin-Vanderhaegen, PRD 72 (2005) 054013 Selyugin-Teryaev, PRD 79 (2009) 033003 Diehl-Kroll, EPJC 73 (2013) 2397

• Also LF 3-quark/qd models used for calculation of PDFs, TMDs

See e.g. Bacchetta-Conti-Radici, PRD 78 (2008) 074010 Boffi-Efremov-Pasquini-Schweitzer, PRD 79 (2009) 094012

Pion

- Global analysis of PDFs tells that they are considerably softer
- At large x and initial scale $q_{\pi}(x, \mu_0) \sim (1-x)^{2.03}$ Aicher-Schafer-Vogelsang, PRL 105 (2010) 252003
- Performing updated analysis of the E615 data on the cross section of the Drell-Yan process $\pi^- N \rightarrow \mu^+ \mu^- X$ including next-to-leading logarithmic threshold resummation effects
- Threshold means $z = Q^2/(Sx_1x_2) \rightarrow 1$, where x_1 and x_2 are momentum fractions of partons participating in hard-scattering reaction, $S = (P_1 + P_2)^2$ is hadronic CM energy squared, Q^2 is photon momentum squared
- Threshold means: most of initial partonic energy is used to produce virtual photon
- pion PDF at initial scale $\mu_0 = 0.63$ GeV Aicher-Schafer-Vogelsang

 $q_{\pi}(x,\mu_0) = N_{\pi} x^{\alpha-1} (1-x)^{\beta} (1+\gamma x^{\delta})$

where $\alpha = 0.70, \beta = 2.03, \gamma = 13.8, \delta = 2, N_{\pi} = 0.915$

Pion

Required pion LFWF reads

$$\psi_{\pi}(x, \mathbf{k}_{\perp}) = \frac{4\pi N}{\kappa} \frac{\sqrt{\log(1/x)}}{1-x} \sqrt{f(x) \, \bar{f}(x)} \exp\left[-\frac{\mathbf{k}_{\perp}^2}{2\kappa^2} \frac{\log(1/x)}{(1-x)^2} \, \bar{f}(x)\right]$$

where functions f(x) and $\overline{f}(x)$ are specified as

$$f(x) = x^{\alpha - 1} (1 - x)^{\beta} (1 + \gamma x^{\delta}),$$

$$\bar{f}(x) = x^{\bar{\alpha}} (1 - x)^{\beta} (1 + \bar{\gamma} x^{\bar{\delta}}),$$

where α , β , γ , δ , $\bar{\alpha}$, $\bar{\gamma}$ and $\bar{\delta}$ are free parameters and N is the normalization factor

$$N^{-2} = B(\alpha, 1+\beta) + \gamma B(\alpha+\delta, 1+\beta)$$

 $\bar{\alpha} = 0.15 \,,\; \bar{\gamma} = 2.30 \,,\; \bar{\delta} = 1.30$

Pion

$\langle r_\pi^2 angle = 0.424 \ { m fm}^2 \ ({ m data} \ 0.452 \ { m fm}^2)$

- Valence quark decompositions of nucleon FFs [see e.g. Radyushkin, PRD 58 (1998) 114008] $F_i^{p(n)}(Q^2) = \frac{2}{3}F_i^{u(d)}(Q^2) - \frac{1}{3}F_i^{d(u)}(Q^2)$
- quark GPDs in nucleons

 $F_1^q(Q^2) = \int_0^1 dx \,\mathcal{H}^q(x, Q^2)$ $F_2^q(Q^2) = \int_0^1 dx \,\mathcal{E}^q(x, Q^2).$

- PDFs (at $Q^2 = 0$) $\mathcal{H}^q(x,0) = q_v(x), \quad \mathcal{E}^q(x,0) = \mathcal{E}^q(x)$
- Normalized as

Number of quarks valence quarks in the proton $n_q = F_1^q(0) = \int_0^1 dx q_v(x)$

Anomalous magnetic moment $\kappa_q = F_2^q(0) = \int_0^1 dx \, \mathcal{E}^q(x)$

$$\begin{split} G_E^N(Q^2) &= F_1^N(Q^2) - \frac{Q^2}{4m_N^2} F_2^N(Q^2) \\ G_M^N(Q^2) &= F_1^N(Q^2) + F_2^N(Q^2) \\ \langle r_E^2 \rangle^N &= -6 \frac{dG_E^N(Q^2)}{dQ^2} \Big|_{Q^2 = 0} \\ \langle r_M^2 \rangle^N &= -\frac{6}{G_M^N(0)} \left. \frac{dG_M^N(Q^2)}{dQ^2} \right|_{Q^2 = 0} \end{split}$$

Sachs FFs and EM radii

LF representation for quark FFs

$$F_1^q(Q^2) = \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} \left[\psi_{+q}^{+\,*}(x, \mathbf{k}'_\perp) \psi_{+q}^+(x, \mathbf{k}_\perp) + \psi_{-q}^{+\,*}(x, \mathbf{k}'_\perp) \psi_{-q}^+(x, \mathbf{k}_\perp) \right]$$

$$F_2^q(Q^2) =$$

$$-\frac{2M_N}{q^1 - iq^2} \int_0^1 dx \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} \left[\psi_{+q}^{+*}(x, \mathbf{k}'_\perp) \psi_{+q}^{-}(x, \mathbf{k}_\perp) + \psi_{-q}^{+*}(x, \mathbf{k}'_\perp) \psi_{-q}^{-}(x, \mathbf{k}_\perp) \right]$$

- $\psi_{\lambda_q q}^{\lambda_N}(x, \mathbf{k}_{\perp})$ LFWFs with specific helicities for the nucleon $\lambda_N = \pm$ and for the struck quark $\lambda_q = \pm$, where plus and minus correspond to $+\frac{1}{2}$ and $-\frac{1}{2}$
- We work in the frame with $q = (0, 0, \mathbf{q}_{\perp})$, and therefore the Euclidean momentum squared is $Q^2 = \mathbf{q}_{\perp}^2$
- As initial scale we choose the value $\mu_0 = 1$ GeV accepted in the Martin-Stirling-Thorne-Watt global fit EPJC 63 (2009) 189

• Scalar quark-diquark model

$$\begin{split} \psi_{+q}^{+}(x,\mathbf{k}_{\perp}) &= \varphi_{q}^{(1)}(x,\mathbf{k}_{\perp}) \\ \psi_{-q}^{+}(x,\mathbf{k}_{\perp}) &= -\frac{k^{1}+ik^{2}}{xM_{N}} \varphi_{q}^{(2)}(x,\mathbf{k}_{\perp}) \\ \psi_{+q}^{-}(x,\mathbf{k}_{\perp}) &= \frac{k^{1}-ik^{2}}{xM_{N}} \varphi_{q}^{(2)}(x,\mathbf{k}_{\perp}) \\ \psi_{-q}^{-}(x,\mathbf{k}_{\perp}) &= \varphi_{q}^{(1)}(x,\mathbf{k}_{\perp}) \\ \end{split}$$
where $\varphi_{q}^{(1)}(x,\mathbf{k}_{\perp})$ and $\varphi_{q}^{(2)}(x,\mathbf{k}_{\perp})$ are the twist-3 LFWFs

• From AdS/QCD — LF QCD matching with a trivial dilaton potential $\varphi_q^{\text{AdS/QCD}(i)}(x, \mathbf{k}_{\perp}) = N_q^{(i)} \frac{4\pi}{\kappa} \sqrt{\frac{\log(1/x)}{1-x}} \exp\left[-\frac{\mathbf{k}_{\perp}^2}{2\kappa^2} \frac{\log(1/x)}{(1-x)^2}\right]$

Generalization of the nucleon LFWF

•
$$\varphi_q^{(i)}(x, \mathbf{k}_\perp) = N_q^{(i)} \frac{4\pi}{\kappa} \sqrt{\frac{\log(1/x)}{1-x}} \sqrt{f_q^{(i)}(x)} \bar{f}_q(x) \exp\left[-\frac{\mathbf{k}_\perp^2}{2\kappa^2} \frac{\log(1/x)}{(1-x)^2} \bar{f}_q(x)\right]$$

• Functions $f_q^{(i)}$ and \bar{f}_q are specified as

$$f_q^{(1)}(x) = x^{\eta_q^{(1)} - 1} (1 - x)^{\eta_q^{(2)} - 1} (1 + \epsilon_q \sqrt{x} + \gamma_q x)$$

$$f_q^{(2)}(x) = x^{2 + \rho_q} (1 - x)^{\sigma_q} (1 + \lambda_q \sqrt{x} + \delta_q x)^2 f_q^{(1)}(x)$$

$$\bar{f}_q(x) = x^{\bar{\eta}_q^{(1)}} (1 - x)^{\bar{\eta}_q^{(2)}} (1 + \bar{\epsilon}_q \sqrt{x} + \bar{\gamma}_q x)$$

Parameter	Value	Parameter	Value
$\eta_u^{(1)}$	0.45232	$\eta_d^{(1)}$	0.71978
$\eta_u^{(2)}$	3.0409	$\eta_d^{(2)}$	5.3444
ϵ_u	-2.3737	ϵ_d	-4.3654
γ_u	8.9924	γ_d	7.4730
$ar{\eta}_{u}^{(1)}$	0.195	$ar{\eta}_d^{(1)}$	0.280
$ar{\eta}_u^{(2)}$	$\frac{\eta_u^{(2)}-1}{2} - 0.54$	$ar{\eta}_d^{(2)}$	$rac{\eta_d^{(2)}-1}{2}-0.60$
$ar{\epsilon}_u$	-0.71	$ar{\epsilon}_d$	-0.10
$ar{\gamma}_u$	0	$ar{\gamma}_d$	0
$ ho_u$	0.091	$ ho_d$	-0.17
σ_{u}	$(\eta_u^{(2)} - 1) - 0.2409$	σ_d	$(\eta_d^{(2)} - 1) - 2.3444$
λ_{u}	-2.40	λ_d	-0.35
δ_u	3.18	δ_d	4.26

Parameters specifying functions $f_q^{(i)}(x)$ and $\bar{f}_q(x)$

 $\kappa=350~{\rm MeV}$ remains the same as fixed in soft-wall AdS/QCD

- At large *x* PDFs scale as
- $q_v(x) \sim (1-x)^{\eta_q^{(2)}}$ $u_v(x) \sim (1-x)^3, \ d_v(x) \sim (1-x)^5$

•
$$\mathcal{E}^{q}(x) \sim q_{v}(x) (1-x)^{1+\sigma_{q}/2} \sim (1-x)^{\eta_{q}^{(2)}+1+\sigma_{q}/2}$$

 $\mathcal{E}^{u}(x) \sim (1-x)^{5}, \ \mathcal{E}^{d}(x) \sim (1-x)^{7}$

• Scaling of nucleon FFs

$$F_1^q(Q^2) \sim \int_0^1 dx (1-x)^{\eta_q^{(2)}} \exp\left[-\frac{Q^2}{4\kappa^2} (1-x)^{1+\bar{\eta}_q^{(2)}}\right] \sim \left(\frac{1}{Q^4}\right)^{1+\Delta_q^{(1)}}$$

and

$$F_2^q(Q^2) \sim \int_0^1 dx (1-x)^{1+\eta_q^{(2)} + \sigma_q/2} \exp\left[-\frac{Q^2}{4\kappa^2} (1-x)^{1+\bar{\eta}_q^{(2)}}\right] \sim \left(\frac{1}{Q^6}\right)^{1+\Delta_q^{(2)}}$$

• $\Delta_q^{(1)}$ and $\Delta_q^{(2)}$ are the small corrections encoding a deviation of the Dirac and Pauli quark form factors from power-scaling laws $1/Q^4$ and $1/Q^6$, respectively

$$\Delta_q^{(1)} = \frac{1 + \eta_q^{(2)}}{2(1 + \bar{\eta}_q^{(2)})} - 1, \quad \Delta_q^{(2)} = \frac{2}{3}\Delta_q^{(1)} + \frac{1}{3}\left(\frac{1 + \sigma_q/2}{1 + \bar{\eta}_q^{(2)}} - 1\right)$$

Analytically these corrections vanish when

$$\bar{\eta}_q^{(2)} = \frac{\sigma_q}{2} = \frac{\eta_q^{(2)} - 1}{2}$$

- Also in this limit we are consistent with Drell-Yan-West duality between the large- Q^2 behavior of nucleon electromagnetic form factors and the large-x behavior of the structure functions.
- However fine-tuning fit of electromagnetic form factors requires a deviation of $\Delta_q^{(i)}$ from zero. Numerically they are

$$\Delta_u^{(1)} = 0.365, \ \Delta_d^{(1)} = 0.233,$$
$$\Delta_u^{(2)} = 0.338, \ \Delta_d^{(2)} = 0.081.$$

Electromagnetic properties of nucleons

Quantity	Our results	Data	
μ_p (in n.m.)	2.793	2.793	
μ_n (in n.m.)	-1.913	-1.913	
r_{E}^{p} (fm)	0.781	0.8768 ± 0.0069	
$\langle r_E^2 angle^n$ (fm²)	-0.113	-0.1161 ± 0.0022	
r^p_M (fm)	0.717	$0.777 \pm 0.013 \pm 0.010$	
r_{M}^{n} (fm)	0.694	$0.862^{+0.009}_{-0.008}$	

Dirac u quark form factor multiplied by Q^4

Dirac d quark form factor multiplied by Q^4

Pauli u quark form factor multiplied by Q^4

Pauli d quark form factor multiplied by Q^4

Dirac proton form factor multiplied by Q^4

Dirac neutron form factor multiplied by $Q^4\,$

Ratio $G_E^p(Q^2)/G_D(Q^2)$

Charge neutron form factor ${\cal G}^n_{\cal E}(Q^2)$

Ratio $\mu_p G_E^p(Q^2)/G_M^p(Q^2)$

Ratio $G^p_M(Q^2)/(\mu_p G_D(Q^2))$

Ratio $G_M^n(Q^2)/(\mu_n G_D(Q^2))$

Ratio $G_E^n(Q^2)/G_M^n(Q^2)$

- AdS/QCD = Holographic QCD (HQCD) approximation to QCD: attempt to model Hadronic Physics in terms of fields/strings living in extra dimensions – anti-de Sitter (AdS) space
- HQCD models reproduce main features of QCD at low and high energies
- Soft–wall holographic approach covariant and analytic model for hadron structure with confinement at large distances and conformal behavior at short distances
- Including nontrivial dilaton potential could help to describe FFs, PDFs and GPDs from unified point of view (in progress)
- Now: we fit FFs and PDFs using generalized LFWFs (must be derived from AdS/QCD — LF QCD matching)
- Future work: nucleon TMDs