Lattice ⊂

Light mesons in a strong magnetic field on the lattice

E .V. Luschevskaya, O. V. Larina, O. A. Kochetkov, O. V. Teryaev

18.09.2014

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Computer simulations of strongly interacting systems

Quantum chromodynamics:

1. spectrum of mesons $(\bar{q}_i q_j)$ and barions $(q_i q_j q_k)$ (masses, decay constants, excited states);

2. confinement problem (computers can prove confinement "numerically");

3. the structure of QCD phase diagram;

QCD effects which occurs at very big magnetic fields in:

noncentral heavy ion collisions;

2. early Universe. It is assumed that magnetic fields $\sim 2 \text{ GeV}$ existed in the Universe during the electroweak phase transition; Graphene as guantum field theory

1. monolayer and bilayer graphene (conductivity, dielectric permittivity);

2. graphene in external magnetic field.

 $eB \sim \Lambda^2_{OCD}$

 $eB \gtrsim 15 m_{\pi}^2 \sim 0.27 \ GeV^2, \ m_{\pi} = 135 \ MeV$ Experiments: ALICE(LHC), RHIC(BNL), FAIR(GSI), NICA(JINR)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

We work in SU(3) lattice gauge theory without dynamical quarks in a constant external magnetic field directed along the third axis z and calculate:

- 1 explore the dependence of neutral ρ^0 and π^0 meson masses versus the value of the magnetic field;
- 2 explore the dependence of charged ρ^{\pm} and π^{\pm} meson masses as a function of the field.

 $\pi^{0}(J = 0), \ \rho^{0}(J = 1): \ \psi_{\pi^{0},\rho^{0}} = (\psi_{u}\psi_{\bar{u}} - \psi_{d}\psi_{\bar{d}})/\sqrt{2}$ $\pi^{+}(J = 0), \ \rho^{+}(J = 1): \ \psi_{\pi^{+},\rho^{+}} = \psi_{u}\psi_{\bar{d}}$ $\pi^{-}(J = 0), \ \rho^{-}(J = 1): \ \psi_{\pi^{-},\rho^{-}} = \psi_{d}\psi_{\bar{u}}$ - Technical details

Technical details

Model: quenched SU(3) lattice gauge theory.

Generation of A_{μ} : the tadpole-improved Wilson-Symanzik action, 16⁴ and 18⁴ lattice volumes, a = 0.115 fm, 0.125 fm lattice spacing. Fermion spectrum: chirally-invariant overlap operator, 50 lowest modes for the inversion, different quark masses $am_q^{lat} = 0.15, 0.02, 0.03$.

Technical details

We calculate correlators of currents $\bar{\psi} O \psi$ (where $O = \gamma_{\mu}$, γ_5) in the external U(1) magnetic field and in the presence of vacuum SU(3) nonabelian gluon fields.

Technical details

Technical details

Solve Dirac equation with the overlap operator numerically:

$$D\psi_k = i\lambda_k\psi_k, \ D = \gamma^\mu(\partial_\mu - iA_\mu).$$

Calculate the propagators:

$$D^{-1}(\mathbf{x},\mathbf{y}) = \sum_{k < M} \frac{\psi_k(\mathbf{x})\psi_k^{\dagger}(\mathbf{y})}{i\lambda_k + m}.$$

Calculate the correlators on the lattice:

 $\langle \bar{\psi} O_1 \psi \bar{\psi} O_2 \psi \rangle_A = -tr[O_1 D^{-1}(x, y) O_2 D^{-1}(y, x)] +$

+tr[O₁D⁻¹(x,x)]tr[O₂D⁻¹(y,y)], $x = (\mathbf{n}a, n_ta), y = (\mathbf{n}'a, n'_ta)$ $\mathbf{n}, \mathbf{n}' \in \Lambda_3 = \{(n_1, n_2, n_3) | n_i = 0, 1, ..., N - 1\}$

Correlators

Correlators

$$G(ec{p}, au) = rac{1}{N^{3/2}}\sum_{\mathbf{n}\in\Lambda_3}\langle j_\mu(\mathbf{n},n_t)j_\mu^\dagger(\mathbf{0},0)
angle e^{-ia\mathbf{n}\mathbf{p}}$$

 $p_i = 2\pi k_i/(aN), \ k_i = -N/2 + 1, ..., N/2.$ We obtain the masses from the correlator of currents

$$\langle \psi^{\dagger}(\vec{0},n_t)O_1\psi(\vec{0},n_t)\psi^{\dagger}(\vec{0},0)O_2\psi(\vec{0},0)\rangle_{\mathcal{A}} = \sum_k \langle 0|O_1|k\rangle \langle k|O^{\dagger}|0\rangle e^{-n_t E_k}.$$

The main contributions comes from $\langle 0|O_1|k\rangle \langle k|O^{\dagger}|0\rangle e^{-n_t E_0}$, We set $\langle \mathbf{p} \rangle = 0$. So $E_0 = m_0$ because $E^2 - \mathbf{p}^2 = m^2$.

-Correlators

We fit the correlator by the function $\tilde{C}_{fit}(n_t) = A_0 e^{-n_t a E_0} + A_0 e^{-(N_T - n_t) a E_0} =$ $2A_0 e^{-N_T a E_0/2} \cosh((N_T - n_t) a E_0)$ at $5 \le n_t \le N_T - 5$

・ロト・西ト・モン・ビー もくの

Mass of π^0 meson vs. the magnetic field

 $\boldsymbol{C}^{PSPS} = \langle \bar{\psi}(\vec{0}, \boldsymbol{n}_t) \gamma_5 \psi(\vec{0}, \boldsymbol{n}_t) \bar{\psi}(\vec{0}, 0) \gamma_5 \psi(\vec{0}, 0) \rangle$

Mass of π^{\pm} meson vs. the magnetic field

 $m_{\pi^{\pm}}(B) = \sqrt{m_{\pi^{\pm}}^2(B=0) + eB}, \quad r_L = 1/\sqrt{eB}$

うくで

Correlators of vector currents in the directions perpendicular to the magnetic field

$$C_{xx}^{VV} = \langle \bar{\psi}(\vec{0}, n_t) \gamma_1 \psi(\vec{0}, n_t) \bar{\psi}(\vec{0}, 0) \gamma_1 \psi(\vec{0}, 0) \rangle$$
$$C_{yy}^{VV} = \langle \bar{\psi}(\vec{0}, n_t) \gamma_2 \psi(\vec{0}, n_t) \bar{\psi}(\vec{0}, 0) \gamma_2 \psi(\vec{0}, 0) \rangle$$

parallel to the magnetic field

$$C_{zz}^{VV} = \langle \bar{\psi}(\vec{0}, n_t) \gamma_3 \psi(\vec{0}, n_t) \bar{\psi}(\vec{0}, 0) \gamma_3 \psi(\vec{0}, 0) \rangle$$

We obtain masses with $s_z = \pm 1$ from the combinations

$$C^{VV}(s_z = \pm 1) = C_{xx}^{VV} + C_{yy}^{VV} \pm i(C_{xy}^{VV} - C_{yx}^{VV})$$

The masses with $s_z = 0$ from $C^{VV}(s_z = 0) = C_{zz}^{VV}$

Charged ρ^{\pm} meson with $s_z = 0$

The $\rho^{\pm}(s_z = 0)$ meson mass with zero spin projection to the direction of the magnetic field.

・ロト・日本・日本・日本・日本

The mass of charged ρ^{\pm} meson with $s_z = +1$ vs. the magnetic field

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The mass of charged ρ^{\pm} meson with $s_z = -1$ vs. the magnetic field

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

g-factor of ρ meson (preliminary)

$$g=rac{E(0)(E(H)-E(-H))}{H}$$
 at $H
ightarrow 0$

Our data: $g = 2.5 \pm 0.2$ (in collaboration with O.V.Teryaev) Preliminary, because we need to make extrapolations to $m_q = 3 \text{ MeV}$. Previous results:

 $g \simeq 2.4$ F. X. Lee et.al., Phys. Rev. D 78, 094502 (2008). $g \simeq 2.3$ J. N. Hedditch et. al. Phys. Rev. D 75, 094504 (2007). Relativistic quark model: $g \simeq 2.37$ Ya.A. Simonov, arXiv: 1211.4349. QCD sum rules: $g = 2.4 \pm 0.4$ T. M. Aliev et. al., Phys. Lett. B 678, 470 (2009). Light mesons in a strong magnetic field on the lattice

Results

Neutral ρ^0 meson with zero spin projection to *B*

The $\rho^0(s_z = 0)$ meson mass versus the magnetic field.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Light mesons in a strong magnetic field on the lattice

Results

Neutral ρ^0 meson with nonzero spin projection to *B*

The $\rho^0(s_z = \pm 1)$ meson mass as a function of the magnetic field.

・ロト・日本・日本・日本・日本・日本

-Conclusions

Conclusions

- 1 In *SU*(3) gluodynamics the masses of charged vector mesons ρ^{\pm} with spin $s_z = 0$ and $s_z = -1$ increase with the field.
- 2 The masses of ρ^{\pm} with $s_z = 1$ decrease with the field in accordance with [M. Chernodub '10].
- The masses of neutral vector ρ^0 mesons with spin projection $s_z = 0$ to the direction of the magnetic field decrease with the value of the field.
- **4** The masses of ρ^0 with spin projection $s_z = \pm 1$ increase with the magnetic field.