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Introduction

Mixing of states (fields) is a well-known phenomenon existing in the systems of
neutrinos, quarks and hadrons. As for theoretical description of mixing
phenomena, a general tendency with time and development of experiment
consists in transition from a simplified quantum-mechanical description to the
quantum field theory methods.

Mixing of fermion fields has some specifics as compared with boson case.
Firstly, there exists γ-matrix structure in a propagator. Secondly, fermion and
antifermion have the opposite P-parity, so fermion propagator contains
contributions of different parities. As a result, besides a standard mixing of
fields with the same quantum numbers, for fermions there exists a mixing of
fields with opposite parities (OPF-mixing) at loop level, even if the parity is
conserved in Lagrangian.

Below we say about non-standard effect of OPF-mixing and its manifestation
in systems of baryon resonances.
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Non-diagonal loop

First of all, look at the non-diagonal self-energy:

Ψ1 Ψ2

Σ12

Let parity is conserved in Lagrangian.
Mixing of fields with the same quantum numbers:

Σ12 = A(p2) + p̂B(p2) =

= Λ+[A(W 2) +WB(W 2)
]

+ Λ−
[
A(W 2)−WB(W 2)

]
Mixing of fields with opposite parities:

Σ12 = γ5C(p2) + p̂γ5D(p2) =

= Λ+γ5[C(W 2) +WD(W 2)
]

+ Λ−γ5[C(W 2)−WD(W 2)
]

Main statement: Σ12 6= 0 for mixing of opposite parities fields. Fermion
specifics!
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Where OPF-mixing can be seen?

Below we will discuss manifestation of OPF-mixing in πN scattering. There are
two places, where we can identify this effect:

1. Simplest one is the pair of partial waves P13, D13, where baryons 3/2± are
produced. It was discussed in: A. Kaloshin, E. Kobeleva and V. Lomov,
Int. J. Mod. Phys. A26 (2011) 2307 on the base of the matrix
propagator.

2. OPF-mixing in another pair: S11, P11 (JP = 1/2±) is subject of paper:
A. Kaloshin, E. Kobeleva and V. Lomov, Mod. Phys. Lett. A28 (2013)
1350156. This required to develop a variant of K-matrix, which includes
this effect.

We will say mainly about last item: OPF-mixing in partial waves S11, P11.
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Partial wave analysis (PWA) of πN → πN with I = 1/2

R. A. Arndt et al. Phys. Rev. C74 (2006) 045205; (gwdac.phys.gwu.edu)
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The pair of partial waves P13, D13 looks as simplest case for identification of
the discussed OPF-mixing effect.
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OPF-mixing and K-matrix

We need to discuss the effect of OPF-mixing in amplitudes of πN scattering
and its implementation in framework of K-matrix description. For a first step
one may restrict oneself by a simplified case: two resonance states and two
channels.
Effective Lagrangians πNN ′ without derivatives and conserving the parity:

Lint = g1N̄1(x)N(x)φ(x) + h.c., for JP (N1) = 1/2−, (1)

Lint = ıg2N̄2(x)γ5N(x)φ(x) + h.c., for JP (N2) = 1/2+. (2)

Let us consider two baryon states of opposite parities with masses m1

(JP = 1/2−), m2 (JP = 1/2+) and two intermediate states πN , ηN . Using
the effective Lagrangians we can calculate contributions of states N1, N2 to
partial waves at tree level:
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OPF-mixing and K-matrix

s-wave amplitudes:

f tree
s,+ (πN → πN) = − (E

(π)
N +mN )

8πW

(
g21,π

W −m1
+

g22,π
W +m2

)
,

f tree
s,+ (πN → ηN) = −

√(
E

(π)
N +mN

)(
E

(η)
N +mN

)
8πW

(
g1,πg1,η
W −m1

+
g2,πg2,η
W +m2

)
,

f tree
s,+ (ηN → ηN) = − (E

(η)
N +mN )

8πW

(
g21,η

W −m1
+

g22,η
W +m2

)
(3)

and p-wave amplitudes:

f tree
p,−(πN → πN) =

(E
(π)
N −mN )

8πW

(
g21,π

−W −m1
+

g22,π
−W +m2

)
,

f tree
p,−(πN → ηN) =

√(
E

(π)
N −mN

)(
E

(η)
N −mN

)
8πW

(
g1,πg1,η
−W −m1

+
g2,πg2,η
−W +m2

)
,

f tree
p,−(ηN → ηN) =

(E
(η)
N −mN )

8πW

(
g21,η

−W −m1
+

g22,η
−W +m2

)
.

(4)
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OPF-mixing and K-matrix

Here W =
√
s is the total CMS energy and E(π)

N (E(η)
N ) is nucleon CMS energy

of system πN (ηN)

E
(π)
N =

W 2 +m2
N −m2

π

2W
. (5)

Short notations for coupling constants, e.g. g1,π = gN1πN .
The tree amplitudes (3)–(4) contain poles with both positive and negative
energy, originated from propagators of N1 and N2 fields of opposite parities.
Accounting the loop transitions results in dressing of states and also in mixing
of these two fields.
Note that W → −W replacement gives

E
(π)
N +mN → −

(
E

(π)
N −mN

)
, (6)

so tree amplitudes (3)–(4) exhibit the MacDowell symmetry property (S. W.
MacDowell, Phys. Rev. 116 (1959) 774)

fp,−(W ) = −fs,+(−W ). (7)

9 / 37



OPF-mixing and K-matrix

In K-matrix representation for partial amplitudes

f = K
(
1− ıPK

)−1
, (8)

diagonal matrix ıP , constructed from CMS momenta, originates from
imaginary part of a loop. Therefore, K-matrix here is simply a matrix of tree
amplitudes that should be identified with amplitudes (3), (4).
As a result we come to representation of partial amplitudes for s- and p-waves

fs(W ) = Ks(W )
(
1− ıPKs(W )

)−1
, fp(W ) = Kp(W )

(
1− ıPKp(W )

)−1
,

(9)
where the matrices Ks, Kp (i.e. tree amplitudes (3), (4)), may be written in
factorized form

Ks = − 1

8π
ρsK̂sρs, Kp =

1

8π
ρpK̂pρp. (10)
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OPF-mixing and K-matrix

Here ρs, ρp are

ρs(W ) =


√
E

(π)
N +mN

W
, 0

0,

√
E

(η)
N +mN

W

 , (11)

ρp(W ) =


√
E

(π)
N −mN

W
, 0

0,

√
E

(η)
N −mN

W

 , (12)

and matrix P consists of CMS momenta as analytic functions of W . In this
case “primitive” K-matrices contain poles with both positive and negative
energies
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OPF-mixing and K-matrix

K̂s(W ) =


g21,π

W −m1
+

g22,π
W +m2

,
g1,πg2,η
W −m1

+
g2,πg2,η
W +m2

g1,πg2,η
W −m1

+
g2,πg2,η
W +m2

,
g21,η

W −m1
+

g22,η
W +m2

 , (13)

K̂p(W ) = K̂s(−W ) =


g21,π

−W −m1
+

g22,π
−W +m2

,
g1,πg2,η
−W −m1

+
g2,πg2,η
−W +m2

g1,πg2,η
−W −m1

+
g2,πg2,η
−W +m2

,
g21,η

−W −m1
+

g22,η
−W +m2

 .

(14)

Recall that m1 is mass of JP = 1/2− state and m2 is mass of JP = 1/2+ one.
Generalization of this construction for the case of more channels and states is
obvious.
Since CMS momenta have the property P (−W ) = −P (W ), the MacDowell
symmetry property (7) is extended from tree amplitudes to unitarized K-matrix
ones (9).
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Naive expectations

Look again at tree partial amplitudes:

f tree
s,+ (πN → πN) = − (E

(π)
N +mN )

8πW

(
g21,π

W −m1
+

g22,π
W +m2

)
,

f tree
p,−(πN → πN) =

(E
(π)
N −mN )

8πW

(
g21,π

−W −m1
+

g22,π
−W +m2

)
.

From a common sense one can expect that negative energy pole should give a
negligible effect in physical energy region. However, this is not the case if
corresponding coupling constant is large |g2,π| � |g1,π|. One can compare
decay width of s- and p-states

Γ(N1 → πN) = g2N1πNΦs, Γ(N2 → πN) = g2N2πNΦp, (15)

where Φs, Φp are corresponding phase volumes. For resonance states not far
from threshold, with masses, e.g. 1.5–1.7 GeV, phase volumes differ greatly,
Φs � Φp. If both resonances have typical hadronic width Γ ∼ 100 MeV, then
coupling constants differ dramatically too, |gN2πN | � |gN1πN |.
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Inclusion of derivatives

Above we use the simplest effective Lagrangians (1)–(2) to derive tree
amplitudes. However, it is well-known, that spontaneous breaking of chiral
symmetry requires pion field to appear in Lagrangian only through derivatives

Lint = f2N̄2(x)γ5γµN(x)∂µφ(x) + h.c., JP = 1/2+, f2 =
g2

m2 +mN
. (16)

It is not difficult to understand how inclusion of derivative changes tree
amplitudes and, hence K-matrix. Pole contribution
π(k1)N(p1)→ N2(p)→ π(k2)N(p2) in that case takes the form:

T = f2
2 ū(p2)γ5k̂2

1

p̂−M γ5k̂1u(p1). (17)

With the use of equations of motion, we see that inclusion of derivative at
vertex leads to the following modification of resonance contribution

g22
1

p̂−M → f2
2 (p̂+mN )

1

p̂−M (p̂+mN ). (18)

14 / 37



Inclusion of derivatives

Separation of the positive and negative energy poles is performed with the
off-shell projector operators Λ± = 1/2

(
1± p̂/W

)
f2
2 (p̂+mN )

1

p̂−mN
(p̂+mN ) = Λ+ f

2
2 (W +mN )2

W −M +Λ−
f2
2 (W −mN )2

−W −M , (19)

where the first term gives contribution to p-wave and second one to s-wave.
Modification of the pole contributions in “primitive” K-matrices (13)–(14) is
evident

g22 → f2
2 (W −mN )2, for s-wave, (20)

g22 → f2
2 (W +mN )2, for p-wave. (21)

One can expect that the inclusion of derivatives most strongly affects on
threshold properties of s-wave due to dumping factor (W −mN )2.
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Fit of P11

First of all, let us try to describe S11 and P11 waves separately. p-wave is
described rather well by our formulas with derivative in vertex (20)– (21), see
Fig. 1. In this case the s-wave states are missing in amplitudes, the p-wave
K-matrix has two positive energy poles.
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Figure 1: The results of fitting of P11-wave of πN scattering. Dots are results of
PWA (R. A. Arndt et al. Phys. Rev. C76 (2006) 045205), solid lines represent our
amplitudes (9)–(14) in the presence of derivative in vertex (20)– (21). K-matrix has
only p-wave states. Partial wave normalization corresponds to R. A. Arndt et al.:
Im f = |f |2 + (1− η2)/4.
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Fit of P11

Quality of description is defined by:

χ2/DOF = 273/95. (22)

The use of vertices without derivative leads to impairment of quality of
description: χ2 > 350, again we need two poles with close masses.
Both variants give a negative background contribution to S11 wave,
comparable in magnitude with other contributions, as it seen on Fig. 2. Variant
without derivative in vertex gives a larger background contribution, rapidly
changing near thresholds. It seems that description of P11 partial wave without
derivative in vertices contradicts to data on S11. On Fig. 2 some typical curves
are shown, there exist different variants with sharp behavior near thresholds.
The presence of derivative in a vertex suppresses the threshold region in
background contribution due to factor (W −mN )2, but in resonance region
this is rather large contribution, see Fig. 2.
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Background in s-wave
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Figure 2: Background contribution to s-wave, generated by p-wave states, i.e. in
this case K-matrix for s-wave (13) has only negative energy poles. Solid lines
represent variant with derivative in vertex (corresponding to curves on Fig. 1), dashed
lines – variant without derivative in vertex.
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Fit of S11

Attempt to describe S11 without background has no success: it doesn’t allow
to reach even qualitative agreement with PWA.
As a next step, let us add the background contribution, arising from p-wave
states (solid lines on Fig. 1) with fixed parameters of p-wave.
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Figure 3: Results of s-wave fitting with fixed parameters for p-wave states.
Parameters of p-wave correspond to curves on Fig. 1, s-wave contains two states with
K-matrix masses 1.55 and 1.75 GeV.
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Fit of S11

One can see from Fig. 3 that quality of description is unsatisfactory in this case
but double-peak behavior is arisen in partial wave for the first time. It means
that to describe S11 wave a background contribution is necessary and its value
is close to solid line curves at Fig. 1
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Joint fit of S11 and P11

Let’s perform the joint analysis of S11 and P11 amplitudes, when resonance
states in one wave generate background in other and vice versa. In this case
K-matrices (13)–(14) have poles with both positive and negative energies: we
use two s-wave and two p-wave poles. This leads to noticeable improvement of
description, as can be seen from Fig. 4; in this case χ2/DOF = 850/190.
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Figure 4: Result of joint fitting of S11 and P11-waves of πN scattering. Dashed
lines show real and imaginary parts of (unitarized) background contribution.
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Joint fit of S11 and P11

At last, background can be generated not only by negative energy poles but by
other terms. We accounted it by adding to elastic amplitudes πN → πN a
smooth contributions of the form:

K̂B
s = A+B(W −mN )2, K̂B

p = A+B(W +mN )2, (23)

which do not violate the MacDowell symmetry property. Note that we have
quite good description χ2/DOF = 584/187 and background contribution in S11

is close to simplest variant of Fig. 2.
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Figure 5: Result of joint fitting of S11 and P11 waves of πN scattering.
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Poles in complex plane

In Table 1 we present the pole masses and widths obtained by continuation of
our amplitudes to complex W plane. As a whole, we see that our values for
mp, Γp are rather close to previously obtained. The only hint for disagreement
is appearance at some sheets of a stable pole 1/2+ with mp ≈ 1500 MeV
instead of generally accepted mass mp ≈ 1365 MeV.

Partial wave,
PDG values

This work Some other works

S11, 1/2−

N(1535) (1510, 70) (1507, 87) (1502, 95), (1648, 80)†

N(1650) (1655, 165) (1659, 149) (1519, 129), (1669, 136)††

P11, 1/2+

N(1440) (1365, 190) (1365, 194) (1359, 162)†

(1500, 160) (1385, 164)?

(1387, 147)††

Table 1: Pole masses and widths (MR,ΓR) extracted from poles position in the
complex plane W : W0 = MR − ıΓR/2.

† R. Arndt et al. Phys. Rev. C74 (2006) 045205.
†† M. Doring et al. Nucl. Phys. A829 (2009) 170.
? G. Hohler πN Newslett. (1993) 108.
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Conclusions

I Effect of mixing of fermion fields with opposite parity can be readily
realized in the framework of K-matrix approach. It leads to well-known
MacDowell symmetry

fl,+(W ) = −fl+1,−(−W ),

connecting two partial waves.
BUT: Taking OPF-mixing into account, MacDowell symmetry leads to
practical consequences: resonance in one partial wave gives rise to
background contribution in another and vice versa.

I This connection, as in case of 3/2± resonances, works mainly in one
direction: it generates large negative background in a wave with lower
orbital momentum.

I As for practical use: we suppose that this connection may be of interest as
a source of additional information about wave with higher orbital
momentum (in our case about P11 and baryons 1/2+)
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Thank you for your attention!

Thank you for your attention!
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Few remark after fit

I We used simplified description of πN partial waves (σN is some
“quasi-channel”) to recognize the effect of OPF-mixing in system of
baryons 1/2±. Rather unexpectedly we obtained a good quality of
description χ2/DOF = 584/187, which is comparable with much more
comprehensive analyses up to 6 channels.

I It seems that OPF-mixing may be introduced into dynamical models used
for baryon physics, e.g. H. Kamano, S. Nakamura, T.-S. Lee and T.
Sato, Phys. Rev. C81 (2010) 065207. Besides theoretical constrains it
can have also some practical meaning.
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Appendix: Off-shell projection operators and fermion dressing

We will use off-shell projection operators Λ±:

Λ± =
1

2

(
1± p̂

W

)
, W =

√
p2,

where W is the rest-frame energy.
Main properties of projection operators are:

Λ±Λ± = Λ±, Λ±Λ∓ = 0, Λ±γ5 = γ5Λ∓,

Λ+ + Λ− = 1, Λ+ − Λ− =
p̂

W
.
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Appendix: Off-shell projection operators and fermion dressing

Dyson–Schwinger equation for dressed propagator G(p):

G(p) = G0 +GΣG0, (24)

where G0 is a bare propagator and Σ is a self-energy.
We can expand all elements in (24) in the basis of projection operators:

G =

2∑
M=1

PMGM , P1 = Λ+, P2 = Λ−. (25)

After it Dyson–Schwinger equation is reduced to equations on scalar functions:

GM = G0,M +GMΣMG0,M , M = 1, 2, (26)

or (
G−1)

M
=
(
G−1

0

)
M
− ΣM . (27)
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Appendix: Off-shell projection operators and fermion dressing

Decomposition of inverse dressed propagator:

G−1 = P1(W −m− Σ1) + P2(−W −m− Σ2). (28)

Usual form of the self-energy is

Σ(p) = A(p2) + p̂B(p2), (29)

and its decomposition in projection basis:

Σ1 = A(W 2) +WB(W 2), Σ2 = A(W 2)−WB(W 2). (30)

Note the property of coefficients in the projection basis:

Σ2(W ) = Σ1(−W ).

Dressed propagator has a form:

G = P1
1

W −m− Σ1
+ P2

1

−W −m− Σ2
. (31)
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Appendix: Off-shell projection operators and fermion dressing

When we have two fermion fields Ψi, the inclusion of interaction leads also to
mixing of these fields. In this case the Dyson–Schwinger equation (24) acquires
matrix indices:

Gij = (G0)ij +GikΣkl(G0)lj , i, j, k, l = 1, 2. (32)

Therefore we have the same equation, but all factor are matrices 2× 2

G(p) = G0 +GΣG0. (33)

The simplest variant is when the fermion fields Ψi have the same quantum
numbers and the parity is conserved in the Lagrangian. Inverse propagator in
this case:

G−1 = P1S1(W ) + P2S2(W ) =

P1

(
W −m1 − Σ1

11 −Σ1
12

−Σ1
21 W −m2 − Σ1

22

)
+ P2S1(−W ).

(34)
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Appendix: Off-shell projection operators and fermion dressing

The matrix coefficients as before have the symmetry property
S2(W ) = S1(−W ). To obtain the matrix dressed propagator G(p) one should
reverse the matrix coefficients:

G(p) = P1

(
S1(W )

)−1
+ P2

(
S2(W )

)−1
. (35)

We see that with use of projection basis the problem of fermion mixing is
reduced to studying of the same mixing matrix as for bosons besides the
obvious replacement s−m2 →W −m.
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Appendix: Off-shell projection operators and fermion dressing

First of all, look at the non-diagonal self-energy:

Ψ1 Ψ2

Σ12

Let parity is conserved in Lagrangian.
Mixing of fields with the same quantum numbers:

Σ12 = A(p2) + p̂B(p2) =

= Λ+[A(W 2) +WB(W 2)
]

+ Λ−
[
A(W 2)−WB(W 2)

]
Mixing of fields with opposite parities:

Σ12 = γ5C(p2) + p̂γ5D(p2) =

= Λ+γ5[C(W 2) +WD(W 2)
]

+ Λ−γ5[C(W 2)−WD(W 2)
]

Main statement: Σ12 6= 0 for mixing of opposite parities fields. Fermion
specifics!
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Appendix: Off-shell projection operators and fermion dressing

Let us consider the joint dressing of two fermion fields of opposite parities
provided that the parity is conserved in a vertex. In this case the diagonal
transition loops Σii contain only I and p̂ matrices, while the off-diagonal ones
Σ12, Σ21 must contain γ5.
Projection basis should be supplemented by elements containing γ5, it is
convenient to choose the γ-matrix basis as:

P1 = Λ+, P2 = Λ−, P3 = Λ+γ5, P4 = Λ−γ5. (36)

In this case the γ-matrix decomposition has four terms:

S =
4∑

M=1

PMSM , (37)

where the coefficients SM are matrices and have the obvious symmetry
properties S2(W ) = S1(−W ), S4(W ) = S3(−W ).
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Appendix: Off-shell projection operators and fermion dressing

Inverse propagator in this basis looks as:

S(p) = P1

(
W −m1 − Σ1

11 0
0 W −m2 − Σ1

22

)
+

+ P2

(
−W −m1 − Σ2

11 0
0 −W −m2 − Σ2

22

)
+

+ P3

(
0 −Σ3

12

−Σ3
21 0

)
+ P4

(
0 −Σ4

12

−Σ4
21 0

)
,

(38)

where the indices i, j = 1, 2 in the self-energy ΣMij numerate dressing fermion
fields and the indices M = 1, . . . , 4 are refered to the γ-matrix decomposition
(37).
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Appendix: Off-shell projection operators and fermion dressing

Reversing of (38) gives the matrix dressed propagator:

G = P1

−W −m2 − Σ2
22

∆1
0

0
−W −m1 − Σ2

11

∆2

+

+ P2

W −m2 − Σ1
22

∆2
0

0
W −m1 − Σ1

11

∆1

+

+ P3

 0
Σ3

12

∆1

Σ3
21

∆2
0

+ +P4

 0
Σ4

12

∆2

Σ4
21

∆1
0

 .

(39)

∆1 = (W −m1 − Σ1
11)(−W −m2 − Σ2

22)− Σ3
12Σ4

21,

∆2 = (−W −m1 − Σ2
11)(W −m2 − Σ1

22)− Σ4
12Σ3

21 = ∆1(W → −W ).
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Partial amplitudes of πN scattering

Note that our K-matrix differs from one used by other authors (e.g. R. A.
Arndt et al. Phys. Rev. C74 (2006) 045205) by:

I Another form of phase-space factor (QFT calculations);
I Presence of the negative energy poles in K̂.

These two points together lead to MacDowell symmetry.
We will use our K-matrix for description of partial waves S11 and P11 of πN
scattering in the energy region W < 2GeV. Following to idea of M. Batinic et
al. Phys. Rev. C51 (1995) 2310, we will use three channels of reaction: πN ,
ηN and σN , where the last is “effective” channel, imitating different ππN
states.
“Primitive” K̂-matrices have a form (13)–(14) but can contain several
JP = 1/2+ and JP = 1/2− states.
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Appendix: Comparison with R. Arndt el al.

Note that our K-matrix amplitudes (9) may be rewritten in other form, close
to the one used in R. A. Arndt et al. Phys. Rev. D32 (1985) 1085

fs(W ) = − 1

8π
ρsK̂s

[
1 + ıρsPρsK̂s(W )/(8π)

]−1
ρs,

fp(W ) =
1

8π
ρpK̂p

[
1− ıρpPρpK̂p(W )/(8π)

]−1
ρp.

(40)
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