POSSIBLE OBSERVATION OF PHASE TRANSITIONS IN N-N SYSTEMS AT JINR SYNCHROPHASOTRON

B.F. Kostenko, J. Pribis

Baldin ISHEPP XXII, 19.09.2014

Experiment: A.M. Baldin et al. Differential Elastic Proton-Proton,Nucleon-Deuteron and Deuteron-Deuteron Scatterings at Big Transfer Momenta, JINR Communication,1-12397, 1979

Peak III. Model $P_X = X \cdot P1$, $M_X = X \cdot M_d$

 $\cos \theta = 0.423$ $M_X = 0.311$ $M_q = 0.318$ V.B. Jovanovic Phys. Rev. **D 82** (2010) 117501

Peak III. Model N(1440)+N(1520)+ N(1535)

Partial-wave analysis: $\vec{J} = \vec{L} + \vec{S}$, PL=0 or 1 (*SP*-approximation)

$$P_{i} = P_{N}P_{d}(-1)^{L} = (-1)^{L}, P_{f} = P_{N^{*}}P_{d}(-1)^{L} = P_{N^{*}}(-1)^{L}$$

$$I) J = 1/2, P = 1, L = 0, S = 1/2,$$

$$J = 1/2, P = -1, L = 1, S = 1/2 \text{ or } 3/2,$$

$$J = 3/2, P = 1, L = 0, S = 3/2,$$

$$J = 3/2, P = -1, L = 1, S = 1/2 \text{ or } 3/2,$$

$$J = 5/2, P = -1, L = 1, S = 3/2$$

$SU(6) \times O(3)$ quark model of baryon excitation (RH Dalitz, RR Horgan, M Jones, LJ Reiners)

$$\vec{j}_{N^*} = \vec{S}_N + \vec{l}$$

Transfer of external orbital momentum into nucleon

 $SU(6) \times O(3)$ quark model of baryon excitation

$$\vec{j}_{N^*} = \vec{S}_N + \vec{l}$$

Simultaneous excitations of L and I

Partial-wave analysis based on $SU(6) \times O(3)$ quark model

$$\vec{j}_{N^{*}} = \vec{S}_{N} + \vec{l},$$

$$N(1440) : \vec{j}_{N^{*}} = \vec{S}_{N}, \quad P = P_{N} = 1,$$

$$N(1520) : \vec{j}_{N^{*}} = \vec{S}_{N} + \vec{1} = \vec{3}/2, \quad P = -1,$$

$$N(1535) : \vec{j}_{N^{*}} = \vec{S}_{N} + \vec{1} = \vec{1}/2, \quad P = -1.$$

Conservation of total orbital momentum and total spin: $\vec{L} + \vec{l}$ and $\vec{S}_N + \vec{S}_d$

Amplitude N+d --> N*+d

$T(N+d \rightarrow N^*+d) = F_1(S_N, S_d) + (\vec{R} \cdot \vec{r})F_2(S_N, S_d)$

Choice of $F_i(S_N, S_d)$

$$T(\vec{S}_N, \vec{S}_d) = C_1 + C_2(\vec{S}_N + \vec{S}_d) \cdot \vec{v} + C_3(\vec{S}_N - \vec{S}_d) \cdot \vec{v} + C_4(\vec{S}_N \cdot \vec{v})(\vec{S}_d \cdot \vec{v}) + C_4(\vec{S}_N \cdot \vec$$

$$+C_{5}(\vec{S}_{N}\cdot\vec{\lambda})(\vec{S}_{d}\cdot\vec{\lambda}) + C_{6}(\vec{S}_{N}\cdot\vec{\mu})(\vec{S}_{d}\cdot\vec{\mu})$$
$$T_{N^{*}}(\vec{S}_{N},\vec{S}_{d}) = C_{1} + C_{2}(\vec{S}_{N}+\vec{S}_{d})\cdot\vec{\nu}$$

$$\vec{v} = \frac{\vec{p} \times \vec{p}'}{\left|\vec{p} \times \vec{p}'\right|}, \qquad \vec{\lambda} = \frac{\vec{p} - \vec{p}'}{\left|\vec{p} - \vec{p}'\right|}, \qquad \vec{\mu} = \frac{\vec{p} + \vec{p}'}{\left|\vec{p} + \vec{p}'\right|}$$

 $T(N+d \rightarrow N^*+d) = A + B(\vec{S}_N + \vec{S}_d) \cdot \vec{v} + (\vec{R} \cdot \vec{r}) \left[C + D(\vec{S}_N + \vec{S}_d) \cdot \vec{v}\right]$

A step to observable particles

$$A + B(\vec{S}_N + \vec{S}_d) \cdot \vec{v} \to \frac{A + B(\vec{S}_N + \vec{S}_d) \cdot \vec{v}}{M_{N(1440)}^2 - s - iM_{N(1440)}\Gamma_{N(1440)}}$$

$$(\vec{R}\cdot\vec{r})\Big[C+D(\vec{S}_N+\vec{S}_d)\cdot\vec{v}\Big] \to f(S_i,S_{N^*})\frac{C+D(\vec{S}_N+\vec{S}_d)\cdot\vec{v}}{M_{N^*}^2-s-iM_{N^*}\Gamma_{N^*}}$$

$$f(S_{i}, S_{N^{*}}) = \sum_{\sigma_{1}=\pm 1/2} \sum_{\sigma_{2}=0,\pm 1} \sum_{m=0,\pm 1} \left\langle \frac{1}{2} \sigma_{1} 1 \sigma_{2} \middle| S_{i}, \sigma_{1} + \sigma_{2} \right\rangle \left\langle \frac{1}{2} \sigma_{1} 1 m \middle| S_{N^{*}}, \sigma_{1} + m \right\rangle$$

$$f\left(\frac{1}{2}, \frac{1}{2}\right) = 2 + \sqrt{2}, \quad f\left(\frac{3}{2}, \frac{1}{2}\right) = \frac{2}{3},$$

$$f\left(\frac{1}{2}, \frac{3}{2}\right) = 0, \quad f\left(\frac{3}{2}, \frac{3}{2}\right) = \frac{4}{3} \left(\sqrt{2} + \sqrt{3} + \sqrt{6}\right)$$

The final expression for amplitude

$$\frac{A + B(\vec{S}_N + \vec{S}_d) \cdot \vec{v}}{M_{N(1440)}^2 - s - iM_{N(1440)}\Gamma_{N(1440)}}T(N(1440) \to N + \pi) +$$

$$\left[\frac{f(S,3/2)}{M_{N(1440)}^{2}-s-iM_{N(1440)}}T(N(1520) \to N+\pi)\right]\left(C+D(\vec{S}_{N}+\vec{S}_{d})\cdot\vec{\nu}\right)+$$

$$\left[\frac{f(S,1/2)}{M_{N(1440)}^{2}-s-iM_{N(1440)}}\Gamma_{N(1440)}T(N(1535)\to N+\pi)\right]\left(C+D(\vec{S}_{N}+\vec{S}_{d})\cdot\vec{v}\right)$$

Three types of macroscopically distinguishable states: $N\pi$, $N\pi\pi$, $N\eta$

Observable cross-section

$$\frac{d^2\sigma}{dt \cdot dM_X^2} = \frac{\pi}{\lambda^{1/2}(s, m_N^2, m_d^2)} \frac{1}{(2S_i + 1)} \sum_{S_f} \int dLips(5, 6, ...) Tr(\hat{T}^{\dagger}\hat{T})$$

$$\lambda(s, m_N^2, m_d^2) = (s + m_N^2 - m_d^2)^2 - 4s m_N^2 \qquad \vec{S}_i = \vec{S}_N + \vec{S}_d$$

$$Tr(\hat{1}) = \begin{cases} 2, & S_i = 1/2, \\ 4, & S_i = 3/2 \end{cases} \qquad Tr(\vec{S}_i \cdot \vec{v}) = 0$$

$$Tr(\vec{S}_i \cdot \vec{v})^2 = \begin{cases} 1/2, & S_i = 1/2, \\ 5, & S_i = 3/2 \end{cases}$$

$$2\Gamma_{N^{*}}M_{N^{*}} = \frac{1}{2S_{N^{*}} + 1}\sum_{\sigma_{i},\sigma_{f}} \left| T_{if}(\sigma_{i},\sigma_{f}) \right|^{2} dLips(5,6,...)$$

Result

Solid line – results of WASA-at-COSY, M=2.37 GeV, Γ=0.07 GeV

EXPERIMENTAL PROPOSAL

To repeat experiment

АМ Балдин, ВК Бондарев, АН Манятовский, НС Мороз, ЮА Панебратцев, АА Повторейко, СВ Рихвицкий, ВС Ставинский, АН Хренов. Дифференциальные упругие протонпротонные, нуклон-дейтронные рассеяния при больших переданных импульсах, Сообщение ОИЯИ 1-12397, 1979

with increased statistics

The first peak: model $d+d \rightarrow X+d$

The second peak: model N+d \rightarrow X+d

Peak I. Model X+d \rightarrow d+d, $P_X = P_1 \cdot M_X / M_d$

Yu. A. Troyan, PEPAN **24** (1993) 683 $M = 1916 \pm 2$, $\Gamma = 9 \pm 4$

A difference between d and pp

Masses:

 $2 M_p = 1876.6 MeV$ $M_d = 1875.6 MeV$ $2 M_p - M_d = 1 MeV$

Isospins: I(pp)=2, I(d)=0

Peak I. Model $d+X \rightarrow d+d$

$$0 = M_X^2 E_1 + M_X t - E_1 (M_d^2 - t) +$$

$$P_1 \sqrt{M_X^4 - 2M_d^2 M_X^2 - 2M_X^2 t + M_d^4 - 2M_d^2 t + t^2} \cos \theta$$

$$M_{\chi}$$
=1.884

Yu. A. Troyan, PEPAN **24** (1993) 683 : $M_X = 1886 \pm 1$, $\Gamma = 4 \pm 1$

Peak I. Model d+X \rightarrow X+d

$$M_X^3 - E_1 M_X^2 - (M_d^2 + t) M_X + E_1 (M_d^2 - t) - P_1 \sqrt{M_X^4 - 2M_X^2 (M_d^2 + t) + M_d^4 - 2M_d^2 t + t^2} \cos \theta = 0$$

cos θ = 0.2154, $M_{\underline{X}}$ = 1.886 GeV Yu.A. Troyan: M=1886 ±1, Γ= 4±1 MeV

Peak I. Model X+X
$$\rightarrow$$
 X+d

$$M_{X}^{2} = \frac{-E_{1}^{2}(M_{d}^{2}-t) + E_{1}M_{d}t + (M_{d}^{2}+t)P_{1}^{2}\cos^{2}\theta}{-E_{1}^{2}+P_{1}^{2}\cos^{2}\theta} + \frac{\sum_{x=1}^{X} \sum_{x=1}^{X} \sum_{x=$$

$$\frac{\sqrt{4E_1M_dt^2P_1^2 - 4M_d^2P_1^2E_1^2t + 4M_d^2P_1^4t\cos^2\theta + 4E_1^2t^2P_1^2 + P_1^2M_d^2t^2}}{-E_1^2 + P_1^2\cos^2\theta}\cos\theta$$

Model: M_X =1.884 GeV M=1886 ± 1, Γ = 4 ±1 MeV, Yu. A. Troyan, PEPAN **24** (1993) 683

Peak I. Model X+X
$$\rightarrow$$
 Y+d
 $M_{Y}^{2} = M_{d}^{2} - \frac{E_{1}(M_{X}^{2} + M_{d}^{2} - t)}{M_{d}} + \frac{P_{1}\sqrt{(M_{X}^{2} + M_{d}^{2} - t)^{2} - 4M_{d}^{2}M_{X}^{2}}}{M_{d}} \cos \theta}{M_{d}} + 2M_{X}\left(\frac{M_{X}E_{1}}{M_{d}} + M_{X} - \frac{M_{X}^{2} + M_{d}^{2} - t}{2M_{X}}\right)$

.

 $\cos \theta = 0.2154$ M_X=1.886 (Yu.A.T: I dibaryon): M_Y=1.898 (Yu.A.T : II dibaryon, M₂=1898 ±1)

Peak I. Model X+d \rightarrow Y+d

 $1.916 \rightarrow 1.884, 1.965 \rightarrow 1.937,$ $1.980 \rightarrow 1.953, 2.106 \rightarrow 2.086.$ Yu.A.T.: 1916 ± 2, 1886 ± 1, 1937 ± 2, 1955 ± 2, 1965 ± 2, 1980 ± 2, 2087 ± 3, 2106 ± 2

Peak II. Model $d+d \rightarrow X+d$

 $1.886 \rightarrow 1.966, 1.898 \rightarrow 1.979, 1.916 \rightarrow 1.998,$ $1.937 \rightarrow 2.020, 1.999 \rightarrow 2.086, 2.017 \rightarrow 2.105$ Yu.A.T. : $1886 \pm 1, 1898 \pm 1, 1965 \pm 2,$ $1980 \pm 2, 1916 \pm 2, 1937 \pm 2, 1999 \pm 2,$ $2017 \pm 3, 2087 \pm 3, 2106 \pm 2$

«ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА» 1993, ТОМ 24, ВЫП.3

УДК 539.17

УЗКИЕ ДИПРОТОННЫЕ РЕЗОНАНСЫ

Ю.А.Троян

Объединенный институт ядерных исследований, Дубна

Сделан критический обзор экспериментальных данных из работ, посвященных поиску и исследованию узких дипротонных резонансов. и опубликованных в 1986—1992 годах. Рассмотрена область эффективных масс двух протонов до 2300 MэB/c². Обсуждается возможность существования 15 резонансных состояний.

MMCP2013, Dubna, July 8

Работа [6] является итогом длительных исследований различных реакций пр-взаимодействий, информация о которых получена с однометровой водородной пузырьковой камеры ЛВЭ ОИЯИ, экспонированной в пучках монохроматических нейтронов различных энергий. Хорошо сформированный пучок нейтронов ($\Delta P_n/P_n \approx 3\%$, $\Delta \Omega_{_{\rm KAH}} \approx 10^{-7}$ ср) и параметров треков ($\Delta P/P \approx 1.5\%$, измерения высокая точность $\Delta \theta \approx 20'$) позволяют практически без примесей выделить различные каналы реакций пр-взаимодействий и получить высокое разрешение по эффективной массе (Γ_{vct} меняется от ≈ 1 МэВ/с² при массах вблизи суммы масс двух протонов до $\approx 16 \text{ M} \cdot \text{B}/\text{c}^2$ при массах в районе 2300 M $\cdot \text{B}/\text{c}^2$).

688 ТРОЯН Ю.А.

$M_{exp} \pm \Delta M_{exp},$ M3B/c ²	$\Gamma_{exp} \pm \Delta \Gamma_{exp},$ M3B/c ²	$\Gamma_R \pm \Delta \Gamma_R,$ M3B/c ²	S.D.	P
	4±1	4±1	5,5	$5 \cdot 10^{-6}$
→ 1898±1	11±3	11±3	5,6	$2 \cdot 10^{-6}$
↓ 1916±2	7±2	5±2	4,1	$2 \cdot 10^{-3}$
	7±2	5±2	5,5	5.10-6
<-> 1955±2	9±4	7±4	3,5	$2 \cdot 10^{-2}$
→ 1965±2	6±2	0+2	4,5	6·10 ⁻⁴
	1		1	· •

Таблица 1

Table 1 (continuation)

<hr/>	9±2	6±2	5,7	$2 \cdot 10^{-6}$
→ 1999±2	9±4	5±4	3,5	$2 \cdot 10^{-2}$
2008±3	4±2	0+2	3,7	$2 \cdot 10^{-2}$
→ 2017±3	4±2	0+2	5,0	1.10-4
2046±3	10±5	4+5	3,8	$7 \cdot 10^{-3}$
> 2087±3	12±7	4+7	3,4	$2 \cdot 10^{-2}$
>−2106±2	11±5	0+5	3,4	$5 \cdot 10^{-2}$

Mass spectrum

Spectrum assumption

Reaction	KAM	dibaryon masses	
$X+D \rightarrow Y+D$	$1916 \rightarrow 1884$	1916, 1886	\sum
	$1926 \rightarrow 1895$	1926, 1896	
	$1936 {\rightarrow} 1905$	1936, 1906	
	$1946 {\rightarrow} 1916$	1946, 1916	
	$1956 {\rightarrow} 1927$	1956, 1926	
	$1966 {\rightarrow} 1938$	1966, 1936	
	$1976 {\rightarrow} 1948$	1976, 1946	
	$1986 {\rightarrow} 1959$	1986, 1956	
	$2047 \rightarrow 2024$	2047, 2027	
	$2057 \rightarrow 2034$	2057, 2037	
	$2067 \rightarrow 2045$	2067, 2047	
	$2077 \rightarrow 2056$	2077, 2057	
	$2087 \rightarrow 2066$	2087, 2067	KAN
	$2097 \rightarrow 2078$	2097, 2077	mas
	$2107 \rightarrow 2087$	2107, 2087	diba
	$2118 \rightarrow 2099$	2118, 2097	
	$2128 \rightarrow 2109$	2128, 2107	το
	$2138 \rightarrow 2120$	2138, 2118	۸ ۸
	$2148 \rightarrow 2131$	2148, 2128) <i>IVI</i> n
	$2158 \rightarrow 2141$	2158, 2138	

The first peak

KAM – kinematically allowed masses,

dibaryon masses – according to

$$M_{\rm n} = M_{\rm d} + 10.08 \ n$$

Spectrum assumption

Reaction	KAM	dibaryon masses	
$X+D \rightarrow Y+D$	$1886 \rightarrow 1966$	1886, 1966	
	$1896 { ightarrow} 1977$	1896, 1976	
	$1916 {\rightarrow} 1998$	1916, 1997	
	$1926 \rightarrow 2009$	1926, 2007	
	$1936 {\rightarrow} 2019$	1936, 2017	
	$1946 \rightarrow 2030$	1946, 2027	
	$1997 \rightarrow 2084$	1997, 2087	
	$2007 \rightarrow 2095$	2007, 2097	
	$2017 \rightarrow 2105$	2017, 2107	The second neak
	$2027 \rightarrow 2116$	2027, 2118	
	$2037 \rightarrow 2127$	2037, 2128	
	$2047 \rightarrow 2137$	2047, 2138	
	$2057 \rightarrow 2148$	2057, 2148	
	$2067 \rightarrow 2158$	2067, 2158	All dibaryons in the range
	$2077 \rightarrow 2169$	2077, 2168	from 1886 to 2198 MeV/c ²
	$2087 \rightarrow 2179$	2087, 2178	may be met in deuteron
	$2097 \rightarrow 2190$	2097, 2188	
	$2107 \rightarrow 2200$	2107, 2198	

Possible explanation

Dynamical Casimir effect

Reported at MMCP2013 arXiv:1310.2874v2

Pions are emitted into the bound state E=5.04 MeV during change of the potential well in close analogy with emission of electromagnetic waves due to motion of resonator's walls

Bound state of meson field

$$(\Box + m^2 + U(r))\varphi(\vec{r}, t) = 0$$

$$\varphi_E(r) = \frac{R_E(r)}{r}$$

$$U(r) = \begin{cases} -U_0, 0 \le r \le a\\ 0, r > a \end{cases}$$

 $\varphi(\vec{r},t) = e^{-iEt}\varphi_E(r)$

 $r < a : R_E(r) = A \sin pr, R_E(0) = 0$

$$E = \sqrt{p^{2} + m^{2} - U_{0}}$$

— energy of pions unside the potential well

Depths of the well:

$$p \simeq 0.528 \text{ GeV/c}, \sqrt{U_0} \simeq 0.546 \text{ GeV}$$

Generalized coherent states

$$\left| \psi_{coherent} \right\rangle = e^{\xi K_{+} - \overline{\xi} K_{-}} \left| 0 \right\rangle \leftrightarrow \left| \psi_{Glauber} \right\rangle = e^{\alpha a^{+} - \overline{\alpha} a} \left| 0 \right\rangle$$
$$\left| \psi_{Glauber} \right\rangle = e^{-|\alpha|^{2}/2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \left| n \right\rangle,$$

$$\pi^0 \pi^0$$
 system: $K_+ = \frac{(a^+)^2}{2}, \quad K_- = \frac{a^2}{2}, \quad K_0 = \frac{aa^+ + a^+a}{4}$

$$\pi^{+}\pi^{-} \text{ system: } K_{+} = a_{+}^{+}a_{-}^{+}, \quad K_{-} = a_{+}a_{-}, \quad K_{0} = \frac{1}{2}(a_{+}^{+}a_{+} + a_{-}^{+}a_{-} + 1)$$
$$\left|\psi_{coherent}\right\rangle = (1 - \left|\zeta\right|^{2})^{k}\sum_{m=0}^{\infty} \left(\frac{\Gamma(m+2k)}{m!\Gamma(2k)}\right)^{1/2} \zeta^{m} \left|k, k+m\right\rangle$$

m – number of pion pairs, *k* – defines of SU(1,1) representation, $\zeta = \sqrt{\rho} e^{i\varphi}$

Multiplicity distributions

$$\pi^0 \pi^0$$
 system: $w_n = \left| \left\langle n \left| \psi_{coherent} \right\rangle \right|^2 = \sqrt{1 - \rho} \frac{n!}{2^n \left[\left(\frac{n}{2} \right)! \right]^2} \rho^{\frac{n}{2}}, \quad n = 2m$

$$\pi^+\pi^-$$
 system: $w_n = \left|\left\langle n \left| \psi_{coherent} \right\rangle\right|^2 = (1-\rho)\rho^{\frac{n}{2}}$

 $\rho = \frac{\left|v\right|^2}{\left|u\right|^2}$

v, u – coefficients of the Bogolyubov transformation

Experimental effects

- Production probabilities for different dibaryons decaying into 2N. Observation of dibaryons up to m=40 means that p ≈ 1, or ε² « sin²(5.04 / Γ).
- Narrow multibarions decaying into several nucleons without secondary pions may be found. They corresponds to <u>Bose-Einstein</u> <u>condensate</u> of pions in compressed few nucleon systems.
- Pion condensate may be responsible for collective flows at the final stage of high-energy nuclear collisions

Thank you for attention!

Explanation of light Troyan's dibaryon

Quark oscillator? NO!

Energy level E=5.04 MeV $\varphi(\vec{r},t) = e^{-iEt}\varphi_{F}(r)$ $\frac{1}{r^2} \frac{d}{dr} r^2 \frac{d\varphi_E(r)}{dr} + (E^2 - m^2 - U(r))\varphi_E(r) = 0$ $\varphi_E(r) = \frac{R_E(r)}{r}$ $\frac{d^2 R_E(r)}{dr^2} + (E^2 - m^2 - U(r))R_E(r) = 0$

Solution

```
r < a : R_E(r) = A \sin pr, R_E(0) = 0
```


Estimation of physical values

Boundary condition at r=a

$$\Rightarrow p \operatorname{ctg} pa = \sqrt{m^2 - E^2}$$

$$t \simeq -0.5 \ \frac{\text{GeV}^2}{\text{c}^2} \ \simeq -\left|\vec{q}\right|^2$$

$$a = \left\langle r^2 \right\rangle^{1/2} \simeq \sqrt{6} \hbar / \left| \vec{q} \right| = 0.684$$
 Fm

m=0.14 GeV/c², $E = 5.04 \cdot 10^{-3}$ GeV p ≈ 0.528 GeV/c, $\sqrt{U_0} \approx 0.546$ GeV

— Depths of the well

Parity and isospin conservation

$$P\psi_n = (-1)^n \psi_n, \quad P\psi_0 = \psi_0 \implies \psi_0 \rightarrow \psi_{2m}$$

 \Rightarrow Pions may be produced only in pairs

$$\Psi_{2\pi} = \frac{1}{\sqrt{3}} \left(\pi_a^+ \pi_b^- + \pi_a^- \pi_b^+ - \pi_a^0 \pi_b^0 \right), \quad I_{2\pi} = 0, \quad I_{2\pi}^{3} = 0$$
$$I_{\pi} = 1, \quad I_{\pi^-}^{3} = -1, \quad I_{\pi^0}^{3} = 0, \quad I_{\pi^+}^{3} = +1$$

 $\Rightarrow Pions' state should have zero quantum numbers$ $<math display="block">\Rightarrow Conservation of deutron quantum numbers$

Field evolution during motion of the well

$$\left[\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r^2} + m^2 - U_0(t)\right]\psi(r,t) = 0$$

$$\psi(r,t) = \sin pr \cdot \chi(t)$$

$$\frac{\partial^2 \chi(t)}{\partial t^2} + (p^2 + m^2 - U_0(t))\chi(t) = 0, \quad \omega^2(t) = p^2 + m^2 - U_0(t) \equiv E^2$$

We have an oscillator excited by changing its parameters.

Hamiltonian formalism

$$H = \frac{1}{2} \left(\pi_{\omega}^{2} + \omega^{2}(t) \chi_{\omega}^{2} \right) = \omega(t) \left(a_{\omega}^{+}(t) a_{\omega}(t) + \frac{1}{2} \right)$$

$$\chi_{\omega} = \frac{a_{\omega} + a_{\omega}^{+}}{\sqrt{2\omega}}, \quad \pi_{\omega} = \frac{a_{\omega} - a_{\omega}^{+}}{\sqrt{2\omega}}$$

Field quantization

$$\hat{\psi}(r,t) = const \cdot \left(\frac{\hat{a}_{\omega}^{+}(t) + \hat{a}_{\omega}(t)}{\sqrt{2\omega_{1}}}\right) \sin pr,$$

$$\chi_{\omega}(t) = \frac{\hat{a}_{\omega}^{+}(t) + \hat{a}_{\omega}(t)}{\sqrt{2\omega_{1}}}, \quad \omega_{1} \equiv \omega(t_{1}) = \sqrt{p^{2}(t_{1}) + m^{2} - U_{0}(t_{1})}$$

$$\begin{array}{l} \textbf{Bogolyubov's transformation} \\ \begin{pmatrix} \hat{a}(t_1 + dt) \\ \hat{a}^+(t_1 + dt) \end{pmatrix} = \begin{pmatrix} u(dt) & v(dt) \\ \overline{v}(dt) & \overline{u}(dt) \end{pmatrix} \begin{pmatrix} \hat{a}(t_1) \\ \hat{a}^+(t_1) \end{pmatrix} \equiv S(dt) \begin{pmatrix} \hat{a}(t_1) \\ \hat{a}^+(t_1) \end{pmatrix} \end{array}$$

$$S(dt_{1} + dt_{2} + \dots + dt_{n}) = S(dt_{n})\dots S(dt_{2})S(dt_{1})$$
$$|u|^{2} - |v|^{2} = 1 \Longrightarrow S(t) \in SU(1, 1)$$

Matrixes of the Bogolyubov transformation generate SU(1,1) group at multiplication .

Lie algebra of SU(1,1) and elements of SU(1,1) group expressed through generators of the group

$$\begin{bmatrix} K_0, K_{\pm} \end{bmatrix} = \pm K_{\pm}, \quad \begin{bmatrix} K_{-}, K_{+} \end{bmatrix} = 2K_0$$
$$\begin{bmatrix} K_1, K_2 \end{bmatrix} = -iK_0, \quad \begin{bmatrix} K_2, K_0 \end{bmatrix} = iK_1, \quad \begin{bmatrix} K_0, K_1 \end{bmatrix} = iK_2$$
$$K_{\pm} = \pm i(K_1 \pm iK_2)$$

$$S(dt) = e^{(\beta K_{+} - \overline{\beta} K_{-} - i\gamma K_{0})dt} = e^{-iHdt}$$

— Hamiltonian of the field should be a linear combination of SU(1,1) generators

Expression of *H* through generators

$$H = i(\beta K_{+} - \overline{\beta} K_{-} - i\gamma K_{0}) = \frac{1}{2} \left(\pi_{\omega}^{2} + \omega^{2}(t) \chi_{\omega}^{2} \right)$$

$$\Rightarrow K_0 = \frac{1}{4} \left(\frac{\pi_{\omega}^2}{\omega_0} \pm \omega_0 \chi_{\omega}^2 \right), \quad K_2 = \frac{1}{4} \left(\pi_{\omega} \chi_{\omega} + \chi_{\omega} \pi_{\omega} \right),$$

$$\beta = \frac{i\omega_0}{2} \left[\left(\frac{\omega(t)}{\omega_0} \right)^2 - 1 \right], \quad \gamma = \omega_0 \left[\left(\frac{\omega(t)}{\omega_0} \right)^2 + 1 \right]$$

Glauber coherent states

$$\left|\psi_{coherent}
ight
angle = e^{\xi K_{+} - \overline{\xi} K_{-}}\left|0
ight
angle \leftrightarrow \left|\psi_{Glauber}
ight
angle = e^{lpha a^{+} - \overline{lpha} a}\left|0
ight
angle$$

$$\left|\psi_{Glauber}\right\rangle = e^{-\left|\alpha\right|^{2}/2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \left|n\right\rangle,$$

$$w_n = \left| \left\langle n \left| \alpha \right\rangle \right|^2 = e^{-|\alpha|^2} \frac{\left| \alpha \right|^{2n}}{n!}, \quad \left\langle n \right\rangle = \left| \alpha \right|^2$$

Generalized coherent states

$$\pi^{0}\pi^{0} \text{ system: } K_{+} = \frac{(a^{+})^{2}}{2}, \quad K_{-} = \frac{a^{2}}{2}, \quad K_{0} = \frac{aa^{+} + a^{+}a}{4}$$

$$C_{2} \equiv K_{0}^{2} - K_{1}^{2} - K_{2}^{2} \equiv k(k-1)I = -\frac{3}{16}I, \quad k = \begin{cases} 1/4 & \text{, states} |2n\rangle \\ 3/4, \text{ states} |2n+1\rangle \end{cases}$$

$$\pi^{+}\pi^{-} \text{ system: } K_{+} = a_{+}^{+}a_{-}^{+}, \quad K_{-} = a_{+}a_{-}, \quad K_{0} = \frac{1}{2}(a_{+}^{+}a_{+} + a_{-}^{+}a_{-} + 1)$$

$$C_{2} = -\frac{1}{4} + \frac{1}{4}(a_{+}^{+}a_{+} - a_{-}^{+}a_{-})^{2}, \quad k = \frac{1}{2}$$

$$|\psi_{coherent}\rangle = (1 - |\zeta|^{2})^{k} \sum_{m=0}^{\infty} \left(\frac{\Gamma(m+2k)}{m!\Gamma(2k)}\right)^{1/2} \zeta^{m} |k, k+m\rangle$$

m – number of pion pairs, *k* – defines of SU(1,1) representation $\zeta = \sqrt{\rho} e^{i\varphi}$

Calculation of p

$$\frac{\partial^2 f(t)}{\partial t^2} + \omega^2(t) f(t) = 0, \quad \omega^2(t) = p^2 + m^2 - U_0(t) \equiv E^2$$
$$f(t) = \begin{cases} v(t) \\ u(t) \end{cases}$$

$$u(t_{1}) = e^{-i\omega_{1}t_{1}}, \quad v(t_{1}) = 0$$

$$u(t_{2}) = c_{1}e^{-i\omega_{1}t_{2}}, \quad v(t_{2}) = c_{2}e^{-i\omega_{1}t_{2}}, \quad \omega(t_{1}) = \omega(t_{2}) = \omega_{1}$$

$$\rho = \frac{|v|^2}{|u|^2} = \frac{|c_2|^2}{|c_1|^2} \quad |c_1|^2 - |c_2|^2 = 1 \Rightarrow |c_1| = \frac{1}{\sqrt{1-\rho}}, \quad |c_2| = \sqrt{\frac{\rho}{1-\rho}}$$

Reduction to a scattering problem
New variable:
$$w(t) = (u(t) + \overline{v}(t)) / c_1$$

 $w(t_1) = e^{-i\omega_1 t_1} / c_1, \quad w(t_2) = e^{-i\omega_1 t_2} + \frac{c_2}{c_1} e^{i\omega_1 t_2}$
 $\rho = R = \frac{|c_2|^2}{|c_1|^2}, \quad D = \frac{1}{|c_1|^2}$
 $\frac{\partial^2 w(t)}{\partial t^2} + \omega^2(t)w(t) = 0, \quad \omega^2(t) = p^2 + m_{\pi}^2 - U_0,$
 $\frac{\partial^2 \psi(x)}{\partial x^2} + \left(\frac{k^2}{2m} - V(x)\right)\psi(x) = 0,$
 $\omega^2(t) \leftrightarrow \left(\frac{k^2}{2m} - V(x)\right), \quad 2m = 1$

Solution of the scattering problem _{R=/B/2, D= |A/2, R+D=1}

B.M.Abramov et al paper Z.Phys. C 69 (1996) 409-413.

