Accelerator Systems for the Production of Medical Isotopes Dr. Sergey Korenev

Invited talk on the 22nd Baldin International Seminar On High Energy Physics, Dubna, Russia September 15-20, 2014

Answers for life.

Outline

- 1. Introduction
- 2. Current system for production of medical isotopes based on cyclotron
- 3. Concept of novel system for production of medical isotope ¹⁸F
- 4. Comparison of systems
- 5. Conclusion

Introduction

- Medical isotopes as a biomarkers found a large application for Positron Emission Tomography (PET)¹
- The commercial cyclotrons used for the production of medical isotopes are given in the table below²

No	Cyclotron	Company	Country	Energy H-,	Beam current
				MeV	Η-, μΑ
1	Eclipse RD	SIEMENS	USA	11	2x40
2	Eclipse HP	SIEMENS	USA	11	2X60
3	Cyclone 11	IBA	Valium	10	2x60
4	Cyclone 18	IBA	Belgium	18	100/150
5	PET-Trace	GE	USA, Sweden	16.5	100
6	HM-12	SUMITOMO	Japan	12	>60
7	TR14	ACSI	Canada	18/24	>100
8	SS18	RIEE	Russia	18	100
9	TS-10	JINR	Russia	10	50

¹ Directory of Cyclotrons used for Radionuclide Production in Member States 2006 Update, IAE Technical Report IAEA-DCRP/2006, Vienna, 2009

² A.I. Papash, Yu.G. Alenitcki, "Commercial Cyclotrons. Part 1. Commercial cyclotrons in energy range 10-30 MeV for isotope production". Physics of Elementary Particles and Atomic Nuclei, JINR, V.39, pp. 1150-1214, 2008

Siemens Cyclotron and Chemistry Solutions Manufacturing PET cyclotrons since 1995

• Siemens Eclipse cyclotrons use to produce the medical isotope ¹⁸F (primary), ¹¹C, ¹⁵O

The main parameters of Eclipse cyclotrons are:

- 1. Kinetic energy of protons is 11 MeV
- 2. Beam current is $120\mu A$ (dual $60\mu A$)

SIEMENS

Siemens Eclipse Cyclotron

Unrestricted © Siemens AG 2014 All rights reserved.

http://www.siemens.com/mi

Current Method for Production of ¹⁸F

• Irradiation of enriched water (¹⁸O) target by proton beam for nuclear reactions with protons

Irradiation of Water Target by Proton Beam

Thickness of water target, cm

Yield of ¹⁸F for Irradiation on Enriched Water by Proton Beam

 Two main parameters of proton beam (kinetic energy and electrical charge) determine the yield for nuclear reactions for the production of ¹⁸F ³

F-18 Yields

3 Report of IAEA, Pub. 1515, 2012, "Cyclotron Produced Radionuclides: Guidance on Facility Design and Production of O[18F]FLUORODEOXYGLUCOSE (FDG)"

Motivation for Search of New Approaches

- Need more output increased ¹⁸F activity
- 11 MeV Eclipse has limitations:
 - Cannot increase kinetic energy limited by size
 - Configuration of the target system

Physics of New Concept

Technical Solution

 New concept based on using the partial thickness of the target and post-acceleration of protons for multiple nuclear reactions:

Accelerator System

Thickness of water target, cm

Accelerator System Multiple stages of acceleration

Accelerator System with Cyclotron

Cyclotron is used as injector

Multi-Stage Accelerator System

Main Parameters of Accelerator System

- 1. Kinetic energy of beam from injector (cyclotron): 11-18 MeV
- 2. Beam current of beam from injector (cyclotron): 100-500 μ A
- 3. Kinetic energy of beam after targets: 5-6 MeV
- Kinetic energy of beam from accelerating structures: (5-6) to (11-18) MeV
- Total yield of 3 targets for each beam from cyclotron with 3.5 Ci: (11.5-12) Ci

Accelerating Structures

- DC structure
- RF structure
- RF superconducting structure
- More effective accelerating structure is the RF superconducting structure with a gradient of accelerating electrical field ~ (25-33) MV/m⁴
- Variant of racetrack FFAG accelerator was considered on the International Cyclotron Conference in Vancouver 2013⁵

Target Concept

Partial use of an electron beam in the irradiated material was published at the EPAC 2008 ⁶

Ionization in Target and Propagation of Proton Beam

Ion = H (11. MeV)

Bending Magnet

- The bending magnet will utilize a standard magnet
- The radius of the bending magnet for a proton beam with a kinetic energy of 6 MeV is simple for engineering design

Comparison of the Two Accelerator Systems

Conclusion

- The new concept of this accelerator system allows for a significant increase in Fluorine-18 (¹⁸F) production within the fixed energy Eclipse cyclotron
- The detail physical analysis of subsystems for the accelerator system is required

Thank you!

Dr. Sergey Korenev Sr. Physicist, SIEMENS Healthcare MI / USA / CCS R&D

810 Innovation Drive Knoxville, TN USA 37932-2751

Phone: +1 (865) 218-2652 E-mail: sergey.korenev@siemens.com

Answers for life.

Unrestricted $\textcircled{\mbox{\scriptsize C}}$ Siemens AG 2014 All rights reserved. Page 23