Study of (anti)deuteron production at SPS energies

V.I. Kolesnikov

Joint Institute for Nuclear Research, Dubna

XXII Baldin ISHEPP

September 15-20, 2014

OUTLINE

- Motivation
- NA49 Experiment
- Data analysis
- □ Results:
 - pT-spectra and rapidity distributions of (anti)nuclei
 - centrality dependence of the cluster yields
 - combined analysis of anti-p and anti-d (coalescence)

□ Summary

Motivation

- Anti-matter is produced in the course collision (no contribution from spectators)
- Enhanced antimatter production in A+A (relative to p+p) was predicted as a signature of QGP
- Provide information on collision dynamics (namely): space-time evolution of the created fireball, effective participant source volume, freeze-out nucleon density distribution, momentum-space correlations, effects of annihilation and break up in the dense matter.

The NA49 Apparatus

Large acceptance: full forward hemisphere Tracking: 4 TPC, $\delta p/p^2 = 3 \ 10^{-5} \ (GeV/c)^{-1}$ Particle ID: $dE/dx : \sigma_E/E \cong 4\%$ TOF: $\sigma \cong 60 \ ps$ Centrality selection: ZDC

Centrality determination in NA49

- Centrality (in %) = $\sigma_{trig}/\sigma_{total}$
- Off-line selection by windows in the measured ZDC spectrum
- For a given bin, all the relevant numbers (i.e. N_{wound} N_{part}, b) are derived from models

TABLE I. Summary of the data sets used in the analysis. The number of events employed are given together with the fraction of the total cross-section (in percent) and corresponding average number of wounded nucleons $\langle N_W \rangle$ per event derived from the VENUS model.

Centrality	$\langle N_{\rm W} \rangle$	$N_{ m events}$
0–23.5%	265	$2.40 imes10^6$
0-12.5%	315	$1.24 imes10^6$
12.5–23.5%	211	$1.16 imes10^6$

Particle ID in NA49 (dE/dx + TOF)

PID: dE/dx from TPCs+TOF in (p-pT) bins
Dbars: dE/dx + track quality cuts applied
. dE/dx < dE/dx_{BB}(d) + kσ(d)

7

Analysis: yeilds

The invariant differential yield for each bin in (y,p_t) evaluated as:

$$\left(\frac{1}{\sigma_{trig}}\right) \boldsymbol{\mathcal{E}} \frac{\boldsymbol{d}^{3}\sigma}{\boldsymbol{d}^{3}\boldsymbol{\boldsymbol{\rho}}} = \frac{1}{2\pi} \frac{1}{\boldsymbol{\rho}_{t}} \frac{\boldsymbol{d}^{2}\boldsymbol{N}}{\boldsymbol{d}\boldsymbol{\rho}_{t}\boldsymbol{d}\boldsymbol{y}} = \frac{1}{2\pi} \frac{(\boldsymbol{N} - \boldsymbol{n}_{bkg_{.}}) \cdot \langle \varepsilon \rangle \langle \varepsilon \rangle \langle \boldsymbol{a} \rangle}{\boldsymbol{N}_{trig_{.}} \cdot \Delta \boldsymbol{y} \cdot \Delta \boldsymbol{\rho}_{t} \langle \boldsymbol{\rho}_{t} \rangle}$$

 $N_{trig.}$ - number of events N - number of counts in m²(dE/dx) – window n_{bkg} – number of background counts $< \varepsilon >$ – overall correction factor (TOF and PID efficiencies) < a > – geometrical acceptance correction

Raw particle spectra are also corrected for losses due to applied cuts and contamination of decay products of hyperons and resonances (Λ , Σ , K⁰) **Corrections:**

- Overall efficiency (including quality cuts) > 60%,,

- feeddown corrections for (anti)protons (20-30%)

Systematic errors (clusters):

Spectra ~20% (dbar) and 10[^] (d) Coalescence – 20-30%

<u>Details:</u> Phys. Rev. C69, 024902 (2004); Phys. Rev. C73, 044910 (2006); Phys. Rev. C77, 024903 (2008); Phys. Rev. C85, 04 4913(2012)

Results

Results: pT-spectra of (anti)d and (anti)p

$$\frac{1}{p_t}\frac{d^2N}{dp_tdy} = \frac{dN/dy}{T(m+T)}\exp\left(-\frac{m_t - m}{T}\right),\qquad(2)$$

- Data for (from top to bottom)
 0-12.5%, 12-23[^], 0-23% central
- Thermal fit function used
- Spectra of clusters (Td ~ 400 MeV) are harder than those of nucleons (Tp ~ 300 MeV) resulting from strong collective transverse flow

 $T_{eff} = T_{thermal} + m < v >$

Results: comparing spectra of d and dbar

- Microscopic transport model predict modification of the anti-baryon spectra in dense matter due to annihilation (*M.Bleicher et al, J. Phys G 25, 1859 (1999*))
- The (predicted) effect is larger at mid-rapidity and low-pT
- NA49 data: modifications were not observed in (anti)p and (anti)A at the top SPS

C. Alt et al (NA49 Coll.) Phys. Rev. C 73, 044910 (2006) C. Anticic et al (NA49 Coll.) Phys. Rev. C 80, 034906 (2009)

Results: centrality dependence of yields

- The yield (normalized to N_w) drops with centrality
- dbars reproduce the trend of pbars in mid-central Pb+Pb

Results: (anti)d yields versus rapidity

- Distinct shapes of the rapidity spectra for d and dbar: can be traced back to those of constituents
- Shapes are motivated by a coalescence approach

Estimates for total yields agreed within 40% to the predictions of the hadron gas modes

TABLE II. dN/dy for d and \overline{d} obtained from fits with Eq. (2) in centrality selected Pb + Pb collisions at 158A GeV in the rapidity interval -1.2 < y < -0.6. Errors are statistical only.

Centrality	Deuterons	Antideuterons
0-12.5%	0.33 ± 0.02	$(8.1 \pm 1.1) imes 10^{-4}$
12.5-23.5%	0.25 ± 0.02	$(5.6 \pm 1.0) \times 10^{-4}$
0-23.5%	0.3 ± 0.01	$(6.9 \pm 1.0) imes 10^{-4}$

- 4π yields (fits): d 3.5 +/- 0.4 (1.75 +/- .18), dbar: 2.4 x 10⁻³
- Hadron Gas Model predicts: 2.5 (d) and 4.6 × 10⁻³ in the 5% central Pb+Pb
- The agreement is within 40% (after a proper scaling for centrality)

Results: centrality dependence of (anti)d yields

Data for min.bias Pb+Pb:

C. Anticic et al (NA49 Coll.) Phys. Rev. C 69, 024902 (2004)

- Weak centrality dependence for (anti)d in Pb+Pb at 158A GeV
- May indicate a some degree of saturation in density distribution for (anti)nucleons at the top SPS

Results: Coalescence

$$E_{d} \frac{d^{3}N_{d}}{dp_{d}^{3}} = B_{2} \left(E_{p} \frac{d^{3}N_{p}}{dp_{p}^{3}} \right)^{2}, \qquad p_{d} = 2 \cdot p_{p}$$

 Cluster yields are related to those of nucleons through the B_A coefficient which depends on details of formation mechanism and reaction dynamics

- B₂ parameters for d and dbar agree within errors → coalescence volumes are similar for cluters and anticlusters
- Strong centrality dependence indicates increase of the source size in more central collisions

Results: Coalescence (2)

SUMMARY

- Measurements of (anti)deuterons in 23% central at 158A GeV are presented
- Shapes of pT-distributions for d and dbar are similar up to pT = 0.9 GeV/c. dbar/d ratio agrees to thermal model predictions and weakly depends on centrality
- Freezeout (coalescence) volumes for (anti)clusters change gradually from SPS to RHIC

The NA49 collaboration

C. Alt⁹, T. Anticic²¹, B. Baatar⁸, D. Barna⁴, J. Bartke⁶, L. Betev¹⁰, H. Białkowska¹⁹, C. Blume⁹, B. Boimska¹⁹, M. Botje¹, J. Bracinik³, R. Bramm⁹, P. Bunčić¹⁰, V. Cerny³, P. Christakoglou², O. Chvala¹⁴, J.G. Cramer¹⁶, P. Csató⁴, P. Dinkelaker⁹, V. Eckardt¹³, D. Flierl⁹, Z. Fodor⁴, P. Foka⁷, V. Friese⁷, J. Gál⁴, M. Gaździcki^{9,11}, V. Genchev¹⁸, G. Georgopoulos², E. Gładysz⁶, K. Grebieszkow²⁰, S. Hegyi⁴, C. Höhne⁷, K. Kadija²¹, A. Karev¹³, M. Kliemant⁹, S. Kniege⁹, V.I. Kolesnikov⁸, E. Kornas⁶, R. Korus¹¹, M. Kowalski⁶, I. Kraus⁷, M. Kreps³, M. van Leeuwen¹, P. Lévai⁴, L. Litov¹⁷, B. Lungwitz⁹, M. Makariev¹⁷, A.I. Malakhov⁸, M. Mateev¹⁷, G.L. Melkumov⁸, M. Mitrovski⁹, J. Molnár⁴, St. Mrówczyński¹¹, V. Nicolic²¹, G. Pálla⁴, A.D. Panagiotou², D. Panayotov¹⁷, A. Petridis², M. Pikna³, D. Prindle¹⁶, F. Pühlhofer¹², R. Renfordt⁹, C. Roland⁵, G. Roland⁵, M. Rybczyński¹¹, A. Rybicki^{6,10}, A. Sandoval⁷, N. Schmitz¹³, T. Schuster⁹, P. Seyboth¹³, F. Siklér⁴, B. Sitar³, E. Skrzypczak²⁰, G. Stefanek¹¹, R. Stock⁹, H. Ströbele⁹, T. Susa²¹, I. Szentpétery⁴, J. Sziklai⁴, P. Szymanski^{10,19}, V. Trubnikov¹⁹, D. Varga^{4,10}, M. Vassiliou², G.I. Veres^{4,5}, G. Vesztergombi⁴, D. Vranić⁷, A. Wetzler⁹, Z. Włodarczyk¹¹ I.K. Yoo¹⁵, J. Zimányi⁴

¹NIKHEF, Amsterdam, Netherlands. ²Department of Physics, University of Athens, Athens, Greece. ³Comenius University, Bratislava, Slovakia. ⁴KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ⁵MIT, Cambridge, USA. ⁶Institute of Nuclear Physics, Cracow, Poland. ⁷Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. ⁸Joint Institute for Nuclear Research, Dubna, Russia. ⁹Fachbereich Physik der Universität, Frankfurt, Germany. ¹⁰CERN, Geneva, Switzerland. ¹¹Institute of Physics Świetokrzyska Academy, Kielce, Poland. ¹²Fachbereich Physik der Universität, Marburg, Germany. ¹³Max-Planck-Institut für Physik, Munich, Germany.
 ¹⁴Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic. ¹⁵Department of Physics, Pusan National University, Pusan, Republic of Korea. ¹⁶Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA. ¹⁷Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria. ¹⁸Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria. ¹⁹Institute for Nuclear Studies, Warsaw, Poland. ²⁰Institute for Experimental Physics, University of Warsaw, Warsaw, Poland. ²¹Rudjer Boskovic Institute, Zagreb, Croatia.

Thank you for your attention!