

Sergey Kiselev (ITEP Moscow) for the ALICE collaboration

- Motivation
- ALICE particle identification
- Results on $K^*(892)^0$ and $\phi(1020)$ production
 - ✓ Signal extraction
 - \checkmark Mass and width
 - ✓ $p_{\rm T}$ spectra
 - ✓ Mean transverse momentum
 - \checkmark Ratios of resonances to stable hadrons
 - ✓ Resonances nuclear modification factors
- Summary

Motivation

• pp and p-Pb collisions:

- \checkmark the baseline for heavy-ion collisions
- ✓ system size dependence
- ✓ role of cold nuclear matter

• AA collisions:

- ✓ in-mediun energy loss
- → resonance nuclear modification factor
- \checkmark restoration of chiral symmetry
- → modification of width, mass and branching ratio
- ✓ regeneration and rescattering effects
- → modification of yield, $\langle p_T \rangle$ and particle ratios
- → timescale between chemical and kinetic freeze-out

Resonance	Г (MeV)	cτ (fm)	Decay	Data
K*(892) ⁰	50	4	$\pi + K$	2010
φ(1020)	4.3	46	K ⁺ + K ⁻	2011
				2011

Dataset	√s _{NN} (TeV)
2010 pp	7
2011 рр	2.76
2010 Pb-Pb	2.76
2011 Pb-Pb	2.76
2013 p-Pb	5.02

15-20 Sep 2014

ALICE – particle identification

ALICE Coll. arXiv:1402.4476

Particle identification (π , K from resonance decay) by:

dE/dx in gas (TPC)
Time-of-flight measurements (TOF)

15-20 Sep 2014

Signal extraction

Pb-Pb

p-Pb Data, event-mix bkg subtracted Breit-Wigner peak fit Residual background Statistical uncertainties ALICE preliminary p-Pb / s_{NN} = 5.02 TeV $+ \overline{K^{*0}} \rightarrow K^{+}\pi^{-} + K^{-}\pi^{+}$ Min. bias, -0.5 < y < 0 $1.2 \le p_{-} < 1.4 \, \text{GeV}/c$ 1.05 0.8 0.85 0.9 0.95 $M_{\rm k\pi}$ (GeV/ c^2) Data, event-mix bkg subtracted

ALICE Coll. arXiv:1404.0495

combinatorial background: mixed-event or like-sign techniques fit: Breit-Wigner (Voigtian for ϕ) + polynomial

15-20 Sep 2014

Pb-Pb: mass and width

Pb-Pb: $p_{\rm T}$ spectra

2010 Pb-Pb data analysis : $p_T \le 5$ GeV/c (ALICE Coll. arXiv:1404.0495) Analysis of Pb-Pb 2011 data extends measured p_T K^{*0} : up to 10 GeV/c ϕ : up to 21 GeV/c

p-Pb: $p_{\rm T}$ spectra

ø

Analysis of p-Pb 2013 data $p_{\rm T}$ spectra measured in various multiplicity bins

 $K^{*0}: 0 < p_T < 15 \text{ GeV/}c$ $\phi: 0.2 < p_T < 16 \text{ GeV/}c$

Pb-Pb: $\langle p_T \rangle$

$\langle p_{\rm T} \rangle_{\rm LHC}$ higher than $\langle p_{\rm T} \rangle_{\rm RHIC}$, ~20% (30%) for K*(ϕ) \rightarrow stronger radial flow

Pb-Pb: $\langle p_T \rangle$, mass ordering

ALICE Coll. arXiv:1404.0495

 K^{*0} and ϕ : similar increasing trend with multiplicity as other hadrons

Central Pb-Pb collisions: particles with similar mass (K*⁰, p and ϕ) have similar $\langle p_T \rangle$ $\rightarrow p_T$ distribution determined by particle mass, i.e. consistent with hydrodynamical picture

15-20 Sep 2014

pp, p-Pb: $\langle p_T \rangle$, mass ordering ?

p-Pb: similar increasing trend for K^{*0} and ϕ with multiplicity as other hadrons

pp, p-Pb: $\langle p_T \rangle_{\phi} > \langle p_T \rangle_{K^{*0}} > \langle p_T \rangle_{p}$ \rightarrow Do resonances not follow mass ordering or do protons deviate?

15-20 Sep 2014

$\langle p_{\rm T} \rangle$ - system dependence

steeper increase of $\langle p_T \rangle$ for smaller systems as also observed for charged particles in ALICE Coll., Phys. Lett. B727(2013)371

K* 0 /K and ϕ /K ratios

ALI-PREL-83725

Pb-Pb:

K*⁰/K exhibits a strong suppression
going from peripheral to most central
Pb-Pb collisions (i.e. increasing system size)

 \rightarrow consistent with the rescattering of K^{*0} daughters as the dominant effect

 φ/K in central Pb-Pb collisions consistent with the value measured in pp collisions and with thermal model prediction (Andronic et al., J. Phys. G38(2011)124081)

p-Pb:

- K^{*0}/K sits along the extrapolation from pp to peripheral Pb-Pb collisions
- \$\$\overline K\$ rather independent from event multiplicity class

Central Pb-Pb: blast-wave predictions

Comparison of $K^{*0}(\phi)$ spectum with blast-wave model (BW) predictions.

- BW parameters $(T_{kin},n,and \beta_s)$ from BW fit of π , K and p (ALICE Coll., Phys. Rev. C88(2013)044910).
- Normalization: measured K yields times the K*⁰/K (φ/K) ratio from the thermal model (J. Stachel et al., J. Phys. Conf. Ser. 509(2014)012019).

K^{*0} suppressed for p_T <2 GeV/*c* in central collisions. No suppression in peripheral collisions. → As expected from dominating rescattering effects

Central Pb-Pb: estimation τ_{kin} - τ_{chem}

Thermal model with rescattering effect

- C. Markert, J. Rafelski and G. Torrieri, arXiv:0206260
- G. Torrieri and J. Rafelski, J. Phys. G28(2002)1911

p/ø ratio

central Pb-Pb:

• p/ϕ ratio is flat for $p_T < 3-4$ GeV/c, i.e. similar spectrum shapes of p and ϕ \rightarrow low- p_T spectral shape determined by particle mass, i.e. consistent with hydrodynamic description

peripheral Pb-Pb:

• p/ϕ ratio similar to pp collisions

central p-Pb:

 Indication of flattening of the p/\$\phi\$ ratio below 1.5 GeV/c in most central collisions
 → hint of the onset of collective behaviour?

peripheral p-Pb:

 p/φ ratio similar to peripheral Pb-Pb and pp collisions

- **High-** p_{T} : in most central collisions, a strong suppression is observed with respect to pp collisions, both for resonances as well as stable hadrons.
- Intermediate p_T : $R_{AA}(\phi) < R_{AA}(p)$. Since the p/ ϕ ratio in Pb-Pb is flat \rightarrow differences due to pp reference spectra.
- Low p_T : below 2 GeV/c larger suppression of K*⁰ production with respect to charged hadrons \rightarrow can be explained in terms of rescattering effects

15-20 Sep 2014

no suppression with respect to pp a moderate Cronin peak at intermediate momentum

Summary

 $K^*(892)^0$ and $\phi(1020)$ resonance production has been measured in a wide momentum range in p-Pb and Pb-Pb collisions at the LHC, as a function of multiplicity (centrality)

- ▷ In pp and in p-Pb the resonance $\langle p_T \rangle$ does not follow the same mass ordering as in central Pb-Pb, where it is compatible to that of stable hadrons with similar mass
- ➤ K*⁰/K exhibits a strong suppression going from peripheral to most central Pb-Pb collisions → K*⁰ yield affected by rescattering in the hadronic phase due to its short lifetime, while \$\phi\$ behaves as a long-lived particle
- ➤ In central p-Pb, ϕ/p at low p_T shows a hint of flattening → the onset of collective behaviour?
- > In central Pb-Pb collisions, similarly to other hadrons, high- p_T resonances are strongly suppressed

15-20 Sep 2014