# Measurements of Np-237 incineration in ADS setup QUINTA

E. Strugalska-Gola<sup>1</sup>, <u>S. Kilim</u><sup>1</sup>, M. Bielewicz<sup>1</sup>, M. Szuta<sup>1</sup>, S. Tyutyunnikov<sup>2</sup>, L. Zavorka<sup>2</sup>, J. Adam<sup>2</sup>, V. Stegailov<sup>2</sup>, V. Chilap<sup>3</sup>,

- 1. National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
  - 2. Joint Institute for Nuclear Research, 141980 Dubna, Russia
    - 3. CPTP "Atomenergomash", Moscow, Russia

#### Some Np-237 introductory data

Radioactive,  $T_{1/2} = 2.144 \times 10^{6} \text{ y}$ 

Produced in a reactor as a nuclear waste.

Difficult to burn in PWRs. It accumulates.

#### Np-237 fission and neutron capture CS dependence on energy



Neutron capture produces another actinide. Np-237 fission is in fact the only way to get rid of its long lived activity. High energy neutrons needed to make fission prevail over capture.

XXII Baldin Seminar

#### Actinides accumulation ways when starting from Np-237





#### **Experiment description**



QUINTA setup 3D view – inner core, front and rear view



Deuteron beam run – Ed = 2, 4 and 8 GeV respectively

| Beam energy                                   | 2 GeV       | 4 GeV       | 8 GeV       |
|-----------------------------------------------|-------------|-------------|-------------|
| Date                                          | 04 Dec 2012 | 13 Dec 2012 | 22 Dec 2012 |
| Irradiation time (h)                          | 6.27        | 9.35        | 16.17       |
| Total number of deuterons (10 <sup>13</sup> ) | 3.052(9)    | 3.569(15)   | 1.390(8)    |

#### Experimental data work-out details

$$I_{f\gamma} = \frac{S_{\gamma}}{\gamma_{f} \cdot m \cdot \varepsilon_{p} \cdot I_{\gamma} \cdot \phi \cdot COI} \cdot \frac{\lambda_{k} \cdot t_{ir}}{(1 - e^{-\lambda \cdot t_{ir}})} \cdot \frac{1}{(1 - e^{-\lambda t_{real}})} \cdot \frac{t_{real}}{t_{live}} \cdot e^{\lambda t_{+}}$$

- $I_{f\gamma}$  actinide fission rate, per deuteron and per gram
- $\gamma$  gamma line index
- f reaction index (f = fission)
- $S_{\gamma}$  gamma peak area
- $\gamma_f$  isotope production yield [%]
- *m* activation sample mass [g]
- $\varepsilon_p$  gamma spectrometer efficiency
- $I_{\gamma}$  gamma line intensity [%]



$$\varepsilon_p = -0.6114x^3 + 9.921x^2 - 50.023x + 65.687$$
  
 $x = \ln(E)$   
 $R^2 = 0.9634$ 

#### Basic gamma lines identified

| E-gamma | Isotope         | Source | T1/2    | Fission yield [%] [4] | I-gamma [%] [3] |
|---------|-----------------|--------|---------|-----------------------|-----------------|
| 529.87  | 1331            | FP     | 20.87h  | 4,45                  | 87              |
| 657.94  | Zr-97->97Nb*    | FP     | 16.744h | 5,38                  | 98,23           |
| 667.71  | Te-132->I-132** | FP     | 3.26d   | 4,39                  | 98,7            |
| 743.36  | Zr-97           | FP     | 16.744h | 5,35                  | 93,6            |
| 772.6   | Te-132->I-132** | FP     | 3.26d   | 4,39                  | 75,6            |
| 1131.51 | I-135           | FP     | 6.57h   | 4,16                  | 22,6            |
| 1260.41 | I-135           | FP     | 6.57h   | 4,16                  | 28,7            |
|         |                 |        |         |                       |                 |
| 923.98  | Np-238          | СР     | 2.117d  | N/A                   | 2,869           |
| 962.77  | Np-238          | СР     | 2.117d  | N/A                   | 0,702           |
| 984.45  | Np-238          | СР     | 2.117d  | N/A                   | 27,8            |
| 1025.87 | Np-238          | СР     | 2.117d  | N/A                   | 9,65            |
| 1028.54 | Np-238          | СР     | 2.117d  | N/A                   | 20,38           |

FP – fission product. CP – neutron capture product.

\*Line 657.94 keV stems in fact from Nb-97 beta decay ( $T_{1/2}$  = 72.1 min), but its quantity is modified by Zr-97 decay rate ( $T_{1/2}$  = 16.744h) [3,4]. Therefore Zr-97 decay constant (16.744h) approximates the line 657.94 activity decreasing.

\*\*Lines 667.71 and 772.6 keV stem from I-132 ( $T_{1/2}$  = 2.295h) but their activities are modified by Te-132 decay rate ( $T_{1/2}$  = 3.26d) [3,4]. Therefore Te-132 decay constant (3.26d) approximates the lines activity decreasing.

#### Np-237 fission rate and capture rate results





#### Np-237 fission and capture dependence on deuteron energy



| Beam<br>deuteron<br>energy<br>[GeV] | Fission rate<br>[10 <sup>-4</sup> g <sup>-1</sup> d <sup>-1</sup> ] | Standard<br>deviation<br>[10 <sup>-4</sup> g <sup>-1</sup> d <sup>-1</sup> ] | Standard<br>deviation<br>[%] | Capture rate<br>[10 <sup>-4</sup> g <sup>-1</sup> d <sup>-1</sup> ] | Standard<br>deviation<br>[10 <sup>-4</sup> g <sup>-1</sup> d <sup>-1</sup> ] | Standard<br>deviation<br>[%] |
|-------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| 2                                   | 0.363                                                               | 0.12                                                                         | 33.04                        | 0.699                                                               | 0.0887                                                                       | 12.69                        |
| 4                                   | 0.509                                                               | 0.164                                                                        | 32.26                        | 1.33                                                                | 0.171                                                                        | 12.88                        |
| 8                                   | 0.76                                                                | 0.306                                                                        | 40.3                         | 1.43                                                                | 0.196                                                                        | 13.67                        |

#### Np-237 fission and capture rates per deuteron unit energy



#### Np-237 fission to capture ratio dependence on deuteron energy



| Beam deuteron<br>energy [GeV] | Fission/Capture ratio | Standard<br>deviation | Standard<br>deviation<br>[%] |
|-------------------------------|-----------------------|-----------------------|------------------------------|
| 2                             | 0.52                  | 0.18                  | 35.40                        |
| 4                             | 0.38                  | 0.13                  | 34.74                        |
| 8                             | 0.53                  | 0.23                  | 42.56                        |

#### Np-237 fission/absorption ratio dependence on deuteron energy



| Beam deuteron | Fission to absorption | Frror | %Error  |
|---------------|-----------------------|-------|---------|
| energy [GeV]  | ratio $I_f/(I_f+I_c)$ | LIIUI | /0L1101 |
| 2             | 0.34                  | 0.05  | 14.05%  |
| 4             | 0.28                  | 0.04  | 12.91%  |
| 8             | 0.35                  | 0.06  | 16.58%  |

#### Literature example of actinide fission/absorption ratio



Fission-to-Absorption Ratio for PWR and SFR

VI. Salvatores, G. Palmiotti; Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges; Progress in Particle and Nuclear Physics 66 (2011) 144–166.

#### Conclusions

- Two ways of Np-237 interaction with neutrons fission and capture.
- Fast neutrons needed to destroy Np-237 fission/capture ratio grows with neutron energy growth.
- Np-237 fission to capture ratio was measured on QUINTA setup for three deuteron energies 2, 4 and 8 GeV.
- The fission to capture ratio seems to be constant for the specified above energies.
- The fission/capture ratio is of order 0.5 for the three deuteron energies.
- The fission/absorption ratio is of order 0.3 for the three deuteron energies.

#### References

- 1. Samuel E. Bays; Reactor Physics Characterization of Transmutation Targeting Options in a Sodium Fast Reactor; INL/CON-07-12439
- 2. Frána J.: Program DEIMOS32 for Gamma-Ray Spectra Evaluation, J. Rad. Nucl. Chem., V. 257, No. 3 P. (2003) 583-587.
- 3. TABLE OF ISOTOPES, 8E
- 4. Fission Product Yields per 100 Fissions for <sup>237</sup>Np High-Energy Neutron Fission Decay, T.R. England and B.F. Rider, LA-UR-94-3106, ENDF-349 ; <u>http://ie.lbl.gov/fission/237nph.txt</u>
- 5. M. Salvatores, G. Palmiotti; Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges; Progress in Particle and Nuclear Physics 66 (2011) 144–166.

## Thank you for attention

### Back up slides

## Some Np-237 fission product data – chains, production yield, decay

| Isotope | T1/2   | Y-individual [%] | Y-cum [%] |
|---------|--------|------------------|-----------|
| 132Sb   | 4.2m   | 5.59E-01         | 6.00E-01  |
| 132Te   | 3.26d  | 2.47             | 3.98      |
| 1321    | 2.28h  | 4.07E-01         | 4.39      |
| 132Xe   | stable | 7.10E-03         | 4.40      |

| Isotope | T1/2  | Y-individual [%] | Y-cum [%] |
|---------|-------|------------------|-----------|
| 97Y     | 3.76s | 3.22             | 4.25      |
| 97Zr    | 16.8h | 1.09             | 5.35      |
| 97Nb-m  | 58.1s | 3.83E-03         | 5.03      |
| 97Nb    | 1.23h | 3.10E-02         | 5.38      |

