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IntrodutionE�ets of mixing in systems of neutrinos and quarks are studied nowintensively, both experimentally and theoretially. General tendenynow is the passing to the quantum �eld methods instead of simpli�edquantum-mehanial desription. So, the main objets beomes thedressed propagators and verties.We disuss here the QFT approah to mixing problem, the mainobjet in our onsideration is the matrix propagator. But thistraditional issue is onsidered in the non-standard frameworks. Wewill obtain main equations of this approah and disuss theirproperties.Possible appliations � mixing of neutinos or quarks.



Spetral representation of operatorWe use for our purposes the so alled spetral representation ofoperator. Reall it with use of quantum-mehanial notations.Let us onsider the eigenstate problem for some self-adjont operator Â
Â|i〉 = λi|i〉.This operator may be represented as

Â =
∑

i

λiΠi =
∑

i

λi|i〉〈i|,and Πi = |i〉〈i| are orresponding projetors (eigenprojetors).Completeness ondition (deomposition of unit):
1 =

∑

i

Πi =
∑

i

|i〉〈i|.The similar representation exists for non self-adjont operator, but oneneeds to onsider both left and right eigenstate problems.



Eigenstate problem for fermion propagatorWe onsider the eigenstate problem for inverse fermion propagator S
S|i〉 = λi|i〉.It's more onvenient to solve this problem for eigenprojetors

Πi = |i〉〈i|
SΠi = λiΠi.If Πi is a omplete set of orthogonal projetors, we an represent S inthe form
S =

∑

i

λiΠi,and propagator G looks as
G =

∑

i

1

λi
Πi.Poles of propagator = zeros of eigenvalues



Single fermion (parity is onserved)The solution in simple ases � the known o�-shell projetors
Λ± =

1

2

(

1± p̂

W

)

, (1)where W =
√

p2 is the rest-frame energy.For bare inverse propagator:
Π1 = Λ+, λ1 = (W −m), (2)
Π2 = Λ−, λ2 = (−W −m). (3)Spetral representation:

S0 = p̂−m = Λ+(W −m) + Λ−(−W −m) (4)Bare propagator looks as
G0 =

1

p̂−m
= Λ+ 1

W −m
+ Λ− 1

−W −m
. (5)



Single fermion (parity is onserved)The dressing of propagator also looks very simple
G0 ⇒ G = Λ+ 1

W −m− Σ1(W )
+ Λ−

1

−W −m− Σ2(W )
, (6)where the self-energy also is deomposed in this basis

Σ(p) = A(p2) + p̂B(p2) = Λ+(A+WB) + Λ−(A−WB) ≡
≡ Λ+Σ1(W ) + Λ−Σ2(W ).Components of self-energy (by onstrution) are related with eahother

Σ2(W ) = Σ1(−W )and the same is true for eigenvalues
λ2(W ) = λ1(−W ).



Single fermion in ase of P-parity violationIt gives the �rst non-trivial example.In ase of parity violation the projetion basis must be supplementedby elements with γ5, it is handy to hoose the basis as
P1 = Λ+, P2 = Λ−, P3 = Λ+γ5, P4 = Λ+γ5. (7)Now the deomposition of a self-energy or a propagator has four terms

S =

4
∑

M=1

SMPM , (8)where oe�ients SM are followed by obvious symmetry properties
S2(W ) = S1(−W ), S4(W ) = S3(−W ) (9)We need to solve the eigenstate problem for inverse propagator S(p)

SΠk = λkΠk.



Single fermion in ase of P-parity violationThe problem an be solved in the most general ase. Let S(p) isde�ned by deomposition (8) with arbitrary oe�ients, the matrix Πalso an be written in suh form with some oe�ients aM .Charateristi equation for λi:
λ2 − λ(S1 + S2) + (S1S2 − S3S4) = 0, (10)After some algebra we an obtain the projetors

Π1 =
1

λ2 − λ1

(

(S2 − λ1)P1 + (S1 − λ1)P2 − S3P3 − S4P4

)

,

Π2 =
1

λ1 − λ2

(

(S2 − λ2)P1 + (S1 − λ2)P2 − S3P3 − S4P4

)

.

(11)with desired properties:
◮ SΠk = λkΠk, where an eigenvalue λk is a root of equation (10),
◮ Π2

k = Πk,
◮ Π1Π2 = Π2Π1 = 0,
◮ Π1 +Π2 = 1.



Single fermion in ase of P-parity violationSpetral representation allows easy to perform the renormalization offermion propagator both in OMS and pole shemes of renormalization.Details: A.E. Kaloshin, V.P. Lomov. Top quark as a resonane,Eur.Phys.J. C72 (2012) 2094Two small omments.
◮ Form of resonane in ase of parity violation looks rathernon-standard. Resonane fator 1/λ1 in viinity of W = m afterOMS renormalization looks as

1

λ1(W )
≈ 1

W
√

1 + ıΓ(W )
KW

−m
≃ 1

W −m+ ıΓ(W )/2
(12)and only at small Γ resonane fator returns to standard form.(! γ5 matrix takes part in Dyson summation)

◮ Spin projetors do not ommutate with dressed propagator inase of parity violation.



Mixing of fermionsLet the inverse propagator is de�ned by deomposition
S =

4
∑

M=1

PMSM ,where the oe�ients SM are the known matries n× n.As for n = 1 ase, we prefer to solve the eigenstate problem
SΠ = λΠ (13)in matrix form, i.e. we are looking for eigenprojetors Π instead ofeigenvetors. The desired eigenprojetors also an be written as suhdeomposition

Π =

4
∑

M=1

PMAM , (14)with matrix n× n oe�ients AM .



Mixing of fermionsReall notations for basis
P1 = Λ+, P2 = Λ−, P3 = Λ+γ5, P4 = Λ−γ5,

Λ±(p) =
1

2

(

1± p̂

W

)

, W =
√

p2.
(15)Reall, that S (and Π also) has two sets of indexes Sαβ;ab, where

α, β = 1, . . . , 4 are the Dira γ-matrix indexes and a, b = 1, . . . , n.Due to simple multipliative properties of basis, the eigenstateproblem gives set of matrix equations
(S1 − λ)A1 + S3A4 = 0

(S2 − λ)A2 + S4A3 = 0

(S1 − λ)A3 + S3A2 = 0

(S2 − λ)A4 + S4A1 = 0 (16)



Mixing of fermionsAs a result, the n× n matries A1, A2 should satisfy the homogeneousequations
ÔA1 ≡ [(S2 − λ)S−1

3 (S1 − λ)− S4]A1 = 0,

Ô′A2 ≡ [(S1 − λ)S−1
4 (S2 − λ)− S3]A2 = 0

(17)and A3, A4 are related with them by
A3 = −S−1

4 (S2 − λ)A2, A4 = −S−1
3 (S1 − λ)A1. (18)One an see that matries Ô, Ô′ are related with eah other by

Ô′ = (S1 − λ)S−1
4 · Ô · (S1 − λ)−1S3, (19)so equations (17) give the same harateristi equation

det[(S2 − λ)S−1
3 (S1 − λ)− S4] = 0. (20)In the absene of degeneration this equation gives 2n di�erenteigenvalues λi(W ).



Mixing of fermions
As a result the matrix solution of left eigenstate problem takes theform
Πi = P1A

i
1 + P2A

i
2 − P3S

−1
4 (S2 − λi)A

i
2 − P4S

−1
3 (S1 − λi)A

i
1, (21)where Ai

1, Ai
2 are solutions of equations

ÔiA
i
1 ≡ Ô(λ = λi)A

i
1 = 0,

Ô′

iA
i
2 ≡ Ô′(λ = λi)A

i
2 = 0

(22)and eigenvalues λi(W ) are de�ned by equation (20).



Right eigenstate problemAs the next step onsider the right eigenstate problem
ΠRS = λΠR. (23)We an look for the right eigenprojetors ΠR in the same form (14)with matrix oe�ients BM . Similar alulations give the matrixsolution of the right problem

Πi
R = P1B

i
1 +P2B

i
2 −P3B

i
1S3(S2 − λi)

−1 −P4B
i
2S4(S1 − λi)

−1, (24)where Bi
1, Bi

2 are solutions of the left homogeneous equations
Bi

1Ô
′

i = 0, Bi
2Ôi = 0 (25)and eigenvalues λi(W ) are de�ned by the same equation (20).



Left and right eigenstate problems togetherLet us require matrix Π to be a solution of both left and righteigenstate problems.First of all, Bi
1 = Ai

1, Bi
2 = Ai

2 as it seen from P1, P2 terms.Coe�ients at P3, P4 give two relations between A1 and A2

Ai
2 = S−1

3 (S1 − λi) ·Ai
1 · S3(S2 − λi)

−1,

Ai
2 = (S2 − λi)

−1S4 · Ai
1 · (S1 − λi)S

−1
4 .

(26)Now the matries A1, A2 satisfy both left and right equations
ÔiA

i
1 = 0, Ai

1Ô
′

i = 0,

Ô′

iA
i
2 = 0, Ai

2Ôi = 0.
(27)Note that homogeneous equations for A1 lead to following equalities

S−1
3 (S1 − λi) ·Ai

1 = (S2 − λi)
−1S4 · Ai

1,

Ai
1 · (S1 − λi)S

−1
4 = Ai

1 · S3(S2 − λi)
−1,

(28)so one an see that two relations (26) in fat oinide. Moreover, onean onvine yourself that equations for Ai
2 (27) are onsequene ofrelation (26) and equations for Ai

1.



Mixing of fermionsNote that the matrix Ai
1 has zeroth determinant and may berepresented in the form

Ai
1 = ψi(ψ̃i)

T, (29)where vetors ψi, ψ̃i (olumns) are solutions of homogeneousequations
Ôiψi = 0, (ψ̃i)

TÔ′

i = 0
(or (Ô′

i)
Tψ̃i = 0

)

. (30)Then solution of both left and right eigenstate problems is
Πi = P1ψi(ψ̃i)

T + P2S
−1
3 (S1 − λi)ψi(ψ̃i)

T(S1 − λi)S
−1
4 −

− P3ψi(ψ̃i)
T(S1 − λi)S

−1
4 − P4S

−1
3 (S1 − λi)ψi(ψ̃i)

T. (31)For short notations it is onvenient to introdue the vetors φi, φ̃i as
φi = S−1

3 (S1 − λi)ψi, (φ̃i)
T = (ψ̃i)

T(S1 − λi)S
−1
4 . (32)Reall, that the vetors φi, φ̃i are solutions of following equations(onsequene of de�nition)

Ô′

iφi = 0, (φ̃i)
TÔi = 0. (33)



Projetors
In these terms the "matrix"Πi, whih is a solution of both left andright eigenvalue problems, takes very elegant form
Πi = P1 · ψi(ψ̃i)

T + P2 · φi(φ̃i)T − P3 · ψi(φ̃i)
T − P4 · φi(ψ̃i)

T. (34)



Πi = projetorsLet us require the matries Πi (34) to be orthogonal projetors
ΠiΠk = δikΠk. (35)It leads to the only ondition for matries in (34)

ψi

[

(ψ̃i)
Tψk + (φ̃i)

Tφk − δik

]

(ψ̃k)
T = 0, (36)whih is equivalent to the orthonormality ondition for vetorsinvolved in (34)

(ψ̃i)
Tψk + (φ̃i)

Tφk = δik. (37)
◮ If i 6= k the ondition (37) is onsequene of equations for ψk and

(ψ̃i)
T.

◮ At i = k (37) de�nes the normalization (with weight) of thevetor ψi in respet to ψ̃i.



CP onservationIn ase of CP onservation the self-energy ontributions
Σ(p) =

4
∑

M=1

PMΣM (W ) = A(p2)+ p̂B(p2)+γ5C(p2)+ p̂γ5D(p2) (38)have the following symmetry properties (see, e.g. B.A. Kniehl and A.Sirlin. PR D77 (2008) 116012)
AT = A, BT = B, DT = D, CT = −C, (39)whih are equivalent to

(Σ1,2)
T = Σ1,2, (Σ3)

T = −Σ4. (40)Sine the inverse propagator S(p) has the same symmetry properties(40), it onnets matries Ô and Ô′

Ô′ = −(Ô)T. (41)Eigenprojetors have the form (34) but now two equations (30)oinide
Ôiψi = 0, Ôiψ̃i = 0. (42)



CP onservationThen (in absene of degeneration) ψ̃i = cψi and, rede�ning vetors
ψi →

√
cψ, we obtain eigenprojetors in the form

Πi = P1 · ψi(ψi)
T − P2 · φi(φi)T + P3 · ψi(φi)

T − P4 · φi(ψi)
T. (43)Here ψi is solution of equation

Ôiψi = 0, (44)vetor φi is related with ψi by
φi = S−1

3 (S1 − λi)ψi, (φi)
T = −(ψi)

T(S1 − λi)S
−1
4 (45)and satis�es the homogenious equation Ô′

iφi = 0.The orthonormality ondition ΠiΠk = δikΠk leads to
(ψi)

Tψk − (φi)
Tφk = δik. (46)As it was said before, it follows from homogeneous equation.



Multipliative renormalization of matrix propagatorIt is onvenient to renormalize inverse matrix propagator S(p)
Sr(p) = Z̄S(p)Z =

4
∑

M=1

Z̄SM (W )PMZ. (47)To obtain orret properties of matrix omponents SrM (W ) at poleviinity, one needs two matrix renormalization "onstants"
Z = α+ βγ5, Z̄ = ᾱ+ β̄γ5, (48)where α, β, ᾱ and β̄ are some n× n matries. The hoie ᾱ = αT and

β̄ = −βT allows to preserve CP-invariane of renormalized matrixpropagator.



Requirements for renormalization
The renormalized dressed matrix propagator Gr(p) has poles at points
{mk}, whih are zeroes of eigenvalues: λk(W = mk) = 0. In viinity ofpoint W = mk matrix propagator has the form (K.I.Aoki et al. Prog.Theor. Phys. Suppl. 73 (1982) 1.)

G
r(p) ∼ 











...
. . .

1

p̂−mk

. . .... 











, (49)where other elements of Gr(p) are regular at W = mk.



Requirements for renormalization
Inverse matrix propagator Sr(p) = 4

∑

M=1

SrM (W )PM looks like
S
r
1 ∼

























O(1) . . . O(ǫk) . . . O(1)... ... ...
O(ǫk) . . . ǫk . . . O(ǫk)... ... ...
O(1) . . . O(ǫk) . . . O(1),

























, at ǫk = W − mk → 0, S
r
2 ∼ O(1),

S
r
3 ∼

























O(1)...
O(ǫk ) . . . 0 . . . O(ǫk)...

O(1)

























, S
r
4 ∼

























O(ǫk)...
O(1) . . . 0 . . . O(1)...

O(ǫk)

























.

(50)



Solution for renormalization onstants
And answer for renormalization onstants in two rows.One an hek that matries α, β have to be hosen in form

α =
(

ψ1(m1), ψ2(m2), . . . , ψn(mn)
)

,

β = −
(

φ1(m1), φ2(m2), . . . , φn(mn)
)

,
(51)where ψk(mk) (φk(mk)) denotes olumn of omponents of vetor

ψk(mk) (φk(mk)).



Conlusions
◮ We developed non-standard approah to problem of fermionmixing. In fat it is based on QFT but uses another algebraialonstrution of martix propagator � generalization of well-knownspetral representation of operator. Note that this representationbeomes non-trivial in presene of P-parity violation.
◮ This approah separates di�erent poles in a matrix propagator(in partiular, poles with positive and negative energy) and looksvery natural for mixing problem. For example, therenormalization onstants are expressed just in introdued by usterms and looks very simple.
◮ There exist few interesting question related with mixing problemin QFT. One of them � properties of spin projetors for dressedfermions, whih are non-trivial in ase of P-parity violation.



Thank you for attention


