Dynamics of Interactions of Anti-Protons and Anti-Nuclei with Nuclei in Geant4

A.Galoyan and V. Uzhinsky (on behalf of the Geant4 Collaboration)

Anti-He-4, March 2011, STAR Collab., Au+Au (RHIC). ALICE Collab., Pb+Pb LHC - CERN

Anti-Matter at Accelerators

Discovery of Anti-Nuclei in cosmic rays? - > PAMELA, BESS, AMS, CAPRICE

Geant4 9.5 realese (http://geant4.cern.ch/support/source_archive.shtml) Interactions of anti-baryons (including anti-hyperons) and light anti-nuclei with matter have been implemented in the Fritiof (FTF) model. This model is valid for incident anti-baryon energies from 0 to 1 TeV, and for incident anti-nucleus momenta from 150 MeV/c/nucleon up to 1 TeV/c/nucleon. Corresponding antibaryon and anti-nuclear cross section classes have also been added. New processes were added to handle inelastic reactions of anti-deuterons, anti-tritons, anti-3He and anti-alphas. (from the release Note)

Content

- 1. Dynamics of Pbar– P interactions in DPM
- 2. Determination of cross sections of Pbar-P processes
- 3. Comparison of calculations of Pbar-P interactions by our model with exp. data
- 4. Cross sections of antiprotons and light anti-nuclei interactions with nuclei
- 5. Dynamics of antiproton-nucleus and anti-nucleus nucleus interactions
- 6. Description of known antiproton nucleus exp. data by the FTF model
- 7. Validation of the FTF model for light anti-nucleus nucleus interactions

Dynamics of Pbar-P interactions

The question marks mean that the corresponding estimations are absent.

Calculation procedure:

V.V. Uzhinsky and A.S. Galoyan, hep-ph/0212369 Cross-sections of various processes in anti-P P interactions.

Physics Book of PANDA Collaboration,

Physics Performance Report for PANDA (AntiProton Annihilations at Darmstadt) Strong Interaction Studies with Antiprotons

$$\begin{aligned} \sigma_a &= 51.6/s^{0.5} - 58.8/s + 16.4/s^{1.5}, \\ \sigma_b &= 77.4/s^{0.5} - 88.2/s + 24.6/s^{1.5}, \\ \sigma_c &= 93/s - 106/s^{1.5} + 30/s^2, \\ \sigma_d &= \sigma_e = \sigma_f = 0, \\ \sigma_g &= 18.6/s^{0.08} - 33.5/s^{0.5} + 30.8/s, \\ \sigma_h &= 0, \end{aligned}$$

Implementation:

A.Galoian and V.Uzhinsky,AIP Conf.Proc.796:79,2005 New Monte Carlo implementation of quark-gluon string model of anti-p p interactions.

Cross sections, process "b", anti-diquark – diquark string creation

Cross sections, process "e", anti-quark – quark string creation

Cross sections, process "e", anti-quark – quark string creation

 $\sigma_e = 140/s \quad (mb)$

Main channels of antiproton – proton interactions are reproduced!

Cross sections, process "c", creations of 2 anti-quark – quark strings

c)

$$\sigma_c = \frac{2}{\sqrt{s - 4m^2}} \left(\frac{m_p + m_t}{s}\right)^2 \quad (mb)$$

7

Cross sections of Pbar-P processes in FTF model of Geant4

Validation of FTF model, Pbar-P annihilation at rest

See more data in: C. Amsler F. Myhrer Ann. Rev. Nucl. Part. Sci. v. 41 (1991) 219.

C. Amsler **Rev. Mod. Phys.** 70 (1998) 1293

Pbar-P channel cross sections with baryons in final states

http://g4validation.fnal.gov:8080/G4ValidationWebApp/G4ValHAD.jsp

E.Bracci et al., CERN/HERA 73-1(1973)

Pbar-P annihilation channel cross sections

http://g4validation.fnal.gov:8080/G4ValidationWebApp/G4ValHAD.jsp

Exp. Data: E.Bracci et al., CERN/HERA 73-1(1973)

Results for inclusive cross sections of Antiproton – Proton reactions Rapidity distributions of pi- mesons in Pbar-P interactions.

G.D. Patel et al., Z. Phys. C - Particles and Fields 12,189, 1982 C.P. Ward et al., Nucl. Phys. B153 299 1979 E.E. Zabrodin et al., Phys. Rev.D, V52, N3, 1995

Results for inclusive cross sections of Antiproton – Proton reactions Rapidity distributions of pi+ mesons in Pbar-P interactions in a wide energy range

Results for inclusive cross sections of Antiproton–Proton reactions P_T^2 of Pi+ mesons P_T^2 of Protons

J. Chyla, Czech. J. Phys. B 30 1980 E.G. Boos et al., Nucl. Phys. B174 45, 1980 E.V. Vlasov, Z. Phys. C - Particles and Fields 13, 95, 1982

Glauber theory for antiproton-nucleus interactions

For the first time a good description of Pbar D interactions was reached in the paper by V. Franco, R.J. Glauber Phys. Rev. 142 (1966) 119 High-energy deuteron cross-sections. O.D. Dalkarov, V.A. Karmanov Nucl.Phys.A445:579-604,1985.

Amplitude of hadron-nucleus elastic scattering

$$F_{hA}(\vec{q}) = \frac{1}{2\pi} \int d^2 b \ e^{i\vec{q}\vec{b}} \left\{ 1 - \prod_{i=1}^A \left[1 - \gamma(\vec{b} - \vec{s}_i) \right] \right\} |\Psi_A|^2 \left(\prod_{i=1}^A d^3 \ r_i \right) = \int b P_{hA}(b) \ J_0(qb) db,$$

Differential elastic scattering cross section $\mathcal{P} = \mathcal{P}_{FA}(\mathcal{Q})$ - Amplitude of elastic hN scattering in impact parameter representation

$$\gamma(\vec{b}) = \frac{\sigma_{hN}^{tot} (1 - i\rho)}{2\pi \beta} \ e^{-\vec{b}^2/2B},$$

ß is the slope parameter of hN differential elastic cross section

$$\beta = (\sigma_{hN}^{tot})^2 (1 + |\rho|^2) / (16 \ \pi \ \sigma_{hN}^{el} \ 0.3897).$$

Square module of the wave function is written as:

$$|\Psi_A|^2 = \delta(\sum_{i=1}^A \vec{r_i}/A) \ \prod_{i=1}^A \rho_A(\vec{r_i}).$$

Diagen: Generator Of Inelastic Nucleus-nucleus Interaction Diagrams. S. Shmakov, V.Uzhinsky, A.Zadorozhny, Comp. Phys. Comm., 54 (1989) 125

Our parameterization of Pbar–P cross sections

$$\sigma_{\bar{p}p}^{tot} = \sigma_{asmpt}^{tot} \left[1 + \frac{C}{\sqrt{s - 4m_N^2}} \frac{1}{R_0^3} \left(1 + \frac{d_1}{s^{0.5}} + \frac{d_2}{s^1} + \frac{d_3}{s^{1.5}} \right) \right] \sigma_{\bar{p}p}^{el} = \sigma_{asmpt}^{el} \left[1 + \frac{C}{\sqrt{s - 4m_N^2}} \frac{1}{R_0^3} \left(1 + \frac{d_1}{s^{0.5}} + \frac{d_2}{s^1} + \frac{d_3}{s^{1.5}} \right) \right] \sigma_{asmpt}^{tot} = 36.04 + 0.304 \ (log(s/33.0625))^2 R_0 = \sqrt{0.40874044} \ \sigma_{asmpt}^{tot} - B R_0 = 11.92 + 0.3036 \ (log(\sqrt{s}/20.74)^2 B = 11.92 + 0.3036 \ (log(\sqrt{s}/20.74)^2 C = 13.55, \ d_1 = -4.47, \ d_2 = 12.38, \ d_3 = -12.43 \\ \sigma_{el}/\sigma_{tot} = 1/(2 \ C_{sh}) \approx 1/3, \ according to the quasi-eikonal approach of the reggeon field theory$$

(K.A. Ter-Martirosyan, A.B. Kaidalov)

Antiproton–Nucleus interactions, cross sections for light nuclei

V. Uzhinsky, J. Apostolakis , A. Galoyan et al. Phys. Lett. B705 (2011) 235

Antiproton-nucleus cross sections implemented in Geant4 PhysicsList – FTF_BERT

Antiproton–Nucleus interactions, cross sections for heavy nuclei

V. Uzhinsky, J. Apostolakis , A. Galoyan et al. Phys. Lett. B705 (2011) 235

Anti-proton-nucleus cross sections implemented in Geant4 PhysicsList – FTF_BERT

We gathered and described all exp.data on antiproton-nucleus cross-sections

Anti-nucleus–Nucleus cross sections, absorption XS

Geant4 class G4ComponentAntiNuclNuclearXS for Pbar–Nucleus and light Anti-Nucleus – Nucleus cross sections. PhysicsList – FTF_BERT

Dynamics of Antibaryon–Nucleus interactions

A. Galoyan, Hyperfine Interactions: v. 215 (2013) 69 "Simulations of light antinucleus-nucleus interactions"

Correction of multiplicity of intra-nuclear collisions

$$N_{max} = \sigma\rho < \tau > v\gamma = \sigma\rho < \tau > P_{lab}^{proj}/m_{proj} = P_{lab}/P_0$$

$$\sigma_{\overline{p}A}^{in} = \int d^2 b [1 - e^{-\sigma_{\overline{p}n}^{in}T(\vec{b})}] = \int d^2 b [1 - e^{-N_{max}} \frac{\sigma_{\overline{p}n}^{in}}{N_{max}}T(\vec{b})] = 0$$

$$\sum_{\nu=1}^{N_{max}} C_{N_{max}}^{\nu} \int d^2 b [1 - e^{-\frac{\sigma_{pn}^{in}}{N_{max}}T(\vec{b})}]^{\nu} e^{-(N_{max}-\nu)\frac{\sigma_{pn}^{in}}{N_{max}}T(\vec{b})}$$

S.Yu. Shmakov, V.V. Uzhinsky, Zeit. fur Phys. C36:77,1987. Max. cross section method: W.A. Coleman: Nucl. Sci. Eng. 32 (1968) 76

20

Antibaryon–Nucleus interactions, inelastic interactions

Correction of multiplicity of intra-nuclear collisions, HARP-CDP exp. data

Pbar-A annihilation at rest.

Cu

Energy spectra of pi+ mesons produced in Pbar–D/Ne at rest

J. Rielberger, Nuclear Physics B (Proc Suppl) 8 (1989) 288-293

U

Results of FTF validation for Antiproton–Nucleus reactions inflight

Momentum distributions of π +

Momentum distributions of Protons

P.L.McGaughey et al., Phys. Rev. Lett. V56, N20, 1986

Results of FTF validation for AntiProton–Nucleus reactions inflight

Angle and energy distributions of pions and protons in Pbar-C /Nbar-C interactions at projectile momentum 750 MeV.c

P.L.McGaughey et al., Phys. Rev. Lett. V56, N20, 1986

Results of FTF validation for AntiProton–Nucleus reactions inflight

Kinetic energy spectra of neutrons produced in Pbar-Al, Pbar-Cu at projectile momenta 1.22 GeV/c

T. von Egidy et al., Eur. Phys. J. A 8, 197 (2000) LEAR collab. data

Results of FTF validation for Antiproton–Nucleus reactions inflight

Kinetic energy spectra of neutrons produced in Pbar-Ta, Pbar-U at projectile momenta 1.22 GeV/c

T. von Egidy et al., Eur. Phys. J. A 8, 197 (2000) LEAR collab. data

Leading antiproton spectra in Pbar-A interactions at high energies

pA-interactions at 120 GeV/c,R. Bailey et al., Z. Phys. C29 (1985) 1.

Results of FTF validation for Pbar-Nucleus interactions at p= 200 GeV/c Rapidity Ch+, Rapidity Ch-mesons

Multi-particle production on hydrogen, argon and xenon targets in a streamer chamber by 200 GeV/c proton and antiproton beams. De Marzo et al. Phys. Rev. D26 (1982) 1019 28

Validation of FTF model for antinucleus-nucleus interactions

We have found only 2 papers with exp. data on Dbar-nucleus interactions:

- V.F. Andreev et. al, "Multiplicities and Correlations of Secondary Charged Particles in the Interactions of Antineutrons and Antideutrons with a Momentum of 6.1 GeV/c per Nucleon with Tantalum Nuclei" IL Nuovo Cimento, Vol. 103 A, N8, 1989.
- 2. B.V. Batyunya et. al, "The Study of Inclusive Characteristics of antiD-D interactions at 12 GeV/c", JINR Preprint P1-87-849

The exp. data were obtained using 2 meter liquid hydrogen chamber of LHE, JINR. A tantalum plate in the chamber was exposed a beam of antideutrons at 12.2 GeV/c

The difference between exp. data and calculations can be connected with beam background ~ 40% from π - mesons and other exp. conditions.

Multiplicities of secondary particles produced in Nbar – Ta

Antineutrons with momentum 6.1 GeV/c were produced in the stripping of antideutrons on hydrogen in the "Lyudmila" liquid hydrogen chamber.

Kinematical spectra of secondary particles produced in Dbar-D interactions at 12 GeV/c

Exp. data from paper: JINR Preprint P1-87-849

Conclusion

Dynamics of processes induced by Antiprotons and light Anti-Nuclei has been considered in the extended Dual Parton Model.

- Cross sections of Pbar-P processes are determined at energies from 100 MeV to 1000 GeV and implemented in the FTF model of Geant4. Good description of Pbar-P interactions has been reached with the FTF model.
- 2. Method for calculations of Pbar–Nucleus and Light Anti-Nucleus– Nucleus cross sections has been developed and implemented in Geant4. Good description of known exp. data on cross sections is obtained.
- Extension of the FTF model on Antiproton-Nucleus and Anti-Nucleus – Nucleus reactions has been proposed. Promising results have been obtained.
- 4. The extended FTF model has been implemented in Geant4 toolkit.

Antiproton-Nucleus interactions, elastic scattering on nuclei

Black disk model approximation with diffuse boundary and Imaginary and Real parts of elastic scattering amplitude

$$F(s,q) = i \; A_1 rac{\pi c q}{ {
m sh}(\pi c q)} rac{J_1(Rq)}{Rq} \; + \; A_2 rac{\pi c q}{{
m sh}(\pi c q)} J_0(Rq)$$

"Structure of antiproton-proton elastic scattering amplitude" A. Galoyan, V.Uzhinsky, JETP Letters, v. 94, No 7 (2011)

94 sets of pbar-p exp data were used from Plab=181 MeV/c up to sqrt(S)=1800 GeV

Description of Antiproton-Proton Interactions

by FTF, DPM and UrQMD models

