Measurements of jet and photon production properties in pp collisions with the ATLAS detector

M. Demichev (JINR) on behalf of ATLAS collaboration XXII Baldin Seminar on HEP Problems

15-Sep-2014

- photon + jet cross sections and dynamics at 7 TeV
- isolated diphoton cross section measurements at 7 TeV
 - dijet production at 7 TeV
 - jet asimuthal decorrelation studies at 7 TeV

- photon+X: direct photon provides a probe of gluon density in proton
- photon+jet: measure the scattering angle $\cos \theta^{\gamma j} = \tanh (y^{\gamma} y^{j})$
 - quark exchange $\approx (1 |\cos \theta^{\gamma j}|)^{-1}$
 - gluon exchange $\approx (1 |\cos \theta^{\gamma j}|)^{-2}$

Prompt isolated photons as probe for PDF gluon density [NuclPhysB(2012)311]

- Isolation requirement reduces fragmentation background
- s-channel gives no singularity at cos θ^{γj} = 1

Photon identification and isolation at ATLAS

- EM shower shape variables provide tight/loose photon identification
- Fine segmentation of calorimeter first layer ($\Delta\eta x \Delta\phi = 0.003 x 0.025$) allows for discrimination between prompt photons and π_0 , η decay photons
- Isolation: total energy in the cone of $\Delta R = 0.4$ but excluding photon core of 5x7 cells in 2nd layer EM calorimeter

$$p + p \rightarrow \gamma + X$$
, $\sqrt{s} = 7$ TeV, $L = 4.7$ fb⁻¹

•
$$E_T^{\gamma} > 100 GeV$$
, $\eta_{\gamma} < 2.37$, excluding gap 1.37 $< \eta_{\gamma} < 1.52$

- tight, isolated photons $E_T^{iso} < 7 GeV$
- 2D-sideband data-driven method of residual background subtraction is used
- photon distributions are corrected for detector effects

M. Demichev

Inclusive isolated photons [PhysRevD(2014)052004], $L = 4.7 fb^{-1}$

- The NLO calculations agree with data up to 1 TeV within theoretical uncertainity
- Pythia describes the data fairy well
- HERWIG underestimates fragmentation at low E_T by $\approx 10\%$

ATLAS

- $p + p \rightarrow \gamma + jet + X$, $\sqrt{s} = 7 \text{ TeV}$, $L = 37 pb^{-1}$
- photon: $E_T^{\gamma} > 45 GeV$, $\eta_{\gamma} < 2.37$, excluding gap 1.37 $< \eta_{\gamma} < 1.52$, tight, $E_T^{iso} < 3 GeV$
- jet: $p_T^{jet} > 40 GeV$, $\eta_{jet} < 2.37$, discarding jets that overlap with photon in $\Delta R = 1$
- Experimental uncertanties \approx 10% (dominated by JES)
- Theoretical uncertanties \approx 10% (dominated by terms beyond NLO)

M. Demichev

Photon + jet dynamics [NuclPhysB(2013)483], $L = 37 pb^{-1}$

- good description by NLO pQCD for $d\sigma/dE_T^{\gamma}$ and $d\sigma/dp_T^{\text{let}}$
- very close predictions for CTEQ6.6 and CT10 PDFs, MSTW2008nlo is 5% higher

ATLAS

Photon + jet dynamics [NuclPhysB(2013)483], $L = 37 pb^{-1}$

- additional phase space constraints: $|\eta^{\gamma} + \eta^{jet}| < 2.37, |\cos \theta^{\gamma j}| < 0.83, m^{\gamma j} > 161 GeV$
- good description by NLO pQCD for $d\sigma/dm^{\gamma j}$ and $d\sigma/d\cos\theta^{\gamma j}$
- the shape of measured angular distribution is closer to that of *direct* photon than to *fragmentation* one
- fit can be used to determine the ratio of direct/fragmentation components

- understanding irreducible background for $H \rightarrow \gamma \gamma$ and new physics
- event selection:
 - leading photon $E_T^{\gamma} > 25 GeV$, subleading photon $E_T^{\gamma} > 22 GeV$ $|\eta_{\gamma}| < 2.37$ excluding the gap region $1.37 < |\eta_{\gamma}| < 1.52$

 - isolation requirement $E_T^{iso} < 4 GeV$, photon separation $\Delta R_{\gamma\gamma} > 0.4$
- two alternative methods applied to subtract the jet background of γi , $j\gamma$, ji events
 - 2x2D-sideband method
 - 2D-template fit method for isolation distribution with applied leakage corrections
 - the difference of $\approx 1.5\%$ is included as systematic uncertainity for isolation
- corrected for electron (misidentified as gamma) background from Z and W decays
- final measurements are corrected for detector and resolution effects ۲

Diphoton $\frac{d\sigma}{dm_{\gamma\gamma}}$ [JHEP01(2013)086], $L = 4.9 fb^{-1}$

- overall good agreement with 2γNNLO, DIPHOX is missing NNLO contribution
- low $m_{\gamma\gamma}$: SHERPA (includes 2 \rightarrow 4 processes) is better than Pythia; intermediate $m_{\gamma\gamma}$: better description by Pythia

15-Sep-2014 12/24

Diphoton $\frac{d\sigma}{d\rho_{T,\gamma\gamma}}$ [JHEP01(2013)086], $L = 4.9 fb^{-1}$

- DIPHOX and $2\gamma NNLO$ fail at low p_T due to initial state soft-gluon radiation divergency
- good agreement with SHERPA and at high p_T with $2\gamma NNLO$

Diphoton $\frac{d\sigma}{d\Delta\phi_{\gamma\gamma}}$ [JHEP01(2013)086], $L = 4.9 fb^{-1}$

- good agreement with SHERPA and $2\gamma NNLO$
- high $\Delta \phi_{\gamma\gamma}$ region sensitive to initial state soft-gluon radiation:
 - DIPHOX and $2\gamma NNLO$ overestimate data

ATLAS

Diphoton $\frac{d\sigma}{d\cos\theta_{\gamma\gamma}^*}$ [JHEP01(2013)086], $L = 4.9 fb^{-1}$

• overall good agreement except for large $cos \theta^*_{\gamma\gamma}$ dominated by fragmentation

- Jet challenge: QCD processes are dominant at hadron colliders
 - probes highest energy transfers up to 5 TeV in m_{12} for $\sqrt{s} = 7 TeV$
 - experimental constraints on proton PDFs (especially for gluon density at high x)
 - background to the new physics (multijet topologies)
 - tuning of Monte-Carlo
- Di-jet selection:
 - anti-k_t jet alrogithm
 - all measurements done for two cone sizes $\Delta R = 0.4$ and $\Delta R = 0.6$
 - leading jet $p_T > 100 GeV$, subleading $p_T > 50 GeV$, $|y_{jet}| < 3$
 - double differential cross section is measured as function of m₁₂ for several y* = |y₁ - y₂| bins
- Good agreement between data and MC, tested for stability against pile-up
- Experimental uncertainties 10% for low m_{12} , up to 25% at high m_{12} , out of them jet-energy calibration gives $\approx 1\% 2\%$

- CT10 describes well the measurements for both jet radii
- HERAPDF1.5 has disagreement at some m₁₂ at certain y*
- Using the p-value to compare the degree of agreement between data and NLO calculations with different PDFs

- MSTW2008, NNPDF2.3 describe well the measurements for both jet radii
- ABM11 has disagreement at some regions of m₁₂
- experimental input for further constraints on PDFs

< 口 > < 同

э

< ∃ >

Jet asimuthal decorrelations [submitted to EPJC], $\sqrt{s} = 7 TeV$, $L = 36.1 pb^{-1}$ and $L = 4.5 fb^{-1}$

- Fixed order QCD predictions expect to perform poorly when HO are important
 - large rapidity separation Δy
 - when jet veto above Q_0 applied
- Improved results expected if HO resummed in terms of ln(1/x) (BFKL approach) or in terms of $ln(Q^2)$ (DGLAP approach).
- Measuring the gap fraction $f(Q_0) = \frac{\sigma_{jj}(Q_0)}{\sigma_{jj}}$
- Gap fraction distribution is sensitive to BFKL at large Δv
- When average transverse momentum of the jets $\overline{p_T} \gg Q_0$ wide-angle soft gluon radiation may become important
- Selection: jets reconstructed with anti- k_t jet $\Delta R = 0.6$ alrogithm
 - Leading jet $p_{T}^{jet} > 60 \, GeV$, sub-leading jet $p_{T}^{jet} > 50 \, GeV$ 2010: $|y_{jet}| < 4.4$, gap fraction with veto scale $Q_0 = 20 \, GeV$

 - 2011: $|y_{iet}| < 2.4$, gap fraction with veto scale $Q_0 = 30 GeV$

Jet asimuthal decorrelations [submitted to EPJC], $\sqrt{s} = 7 TeV$, $L = 36.1 pb^{-1}$ and $L = 4.5 fb^{-1}$

- HEJ+ARIADNE describes the gap fraction for low and medium Δy and p_T
- POWHEG describes the gap fraction for low Δy and for all p_T

- Inclusive photon production
 - tests of pQCD in a clean environment
 - sensivity to the gluon component of proton PDF
- Photon + jet production
 - $\bullet\,$ tests of color dynamics with an accuracy of $\approx\,10\%$
 - dynamics of photon+jet production has good description at the order of O(αα²_s)
- Diphoton production
 - irreducible background to $H\to\gamma\gamma$
 - improved calculations are required to provide a better description at high orders
- Dijet production with and without veto
 - good description of dijet data by pQCD at the highest energy transfer
 - jet-veto measurements have no consistent description over the full phase space with DGLAP and BFKL approaches
- coming soon: inclusive jets and three-jet measurements at 7 TeV

Additional Slides

M. Demichev

jets and photons properties @ ATLAS

15-Sep-2014 22 / 24

э

 [1] Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data
D.d'Enteria, J.Roho, Nucl. Phys. B860,(2012) 311-338

[2] Measurement of the inclusive isolated prompt photon cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector using 4.6fb - 1 ATLAS Collaboration, Phys. Rev. D 89, 052004 (2014)

[3] Dynamics of isolated-photon and jet production in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector ATLAS Collaboration, Nucl. Phys, B 875 (2013) 483-535

[4] Measurement of isolated-photon pair production in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector ATLAS Collaboration, JHEP01(2013)086

[5] Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector ATLAS Collaboration, JHEP05(2014)059

[6] Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector ATLAS Collaboration, submitted to EPJC

jets and photons properties @ ATLAS