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Self-similarity & z-Scaling

| Zborovsky High-p; inclusive particle spectra are described 1D, MTokarev, 1Zborovsky
Yu. Panebratsev by dimensionless functiofl depending Int. Mod. Phys. A 15. 3495 (2000)
G.Skoro on single dimensionless varialde Int.Mod. Phys. A27,1250115 (2012)

Phys.Rev.D54(1996)5548 o
Vs- collision energy

dN/dn - multiplicity density

3 0, - total inelastic cross section
sl dp Ecfo/dp® - inclusive cross section
J- Jakobian from pp to zn

Z (Py 5 My, m, p, dN/d)
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Energy, angular independence¥fz) and power lawP(z) ~ z* over a widez-range.
It indicates on self-similarity of jet productiob\aarious scales.
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z-Scaling& Self-similarity and Fractality

z-Scaling - universal description of inclusive crosdisacver a wide

kinematical region based on properties of locasgdf-similar, fractality
Zborovsky , Panebratsev , Tokarev, Skoro, Phys. Rev. D54, 5548 (1996).

Self-similar: inclusive particles production is described by W(z)= 1 do
the set of values which does not contain the charadtesistle No,, dz
independent variabledimensionless scaling functioi(z)

depending on dimensionless variab)je

Fractality: Variablez is constructed by analogy l@hgth of the fractal

z=2,Q"
Q = (1-%))™(1-X,)" (1-y,) " (L-y,)™

Hered,, &, ande, ¢, are anomalous fractal dimensions
of the colliding objects, fragmentation proces#ofusive and recoil particles
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Motivation

A quantitative characteristics of fractal structures pratesses
in z-scaling are dimensions, &, ande,, ¢, .

Discontinuity of dimension can be regarded asdication on the change
of physical subprocesses underlying inclusive partigégtoduction.

Fractal dimensiong,, 5, ande,, ¢, are defined for
one set of experimental data and then verified in arabfsother data sets.

New procedure: determination of dimensions by usiagt&l analysis.

>
>

Comparison of existing methods of fractal analysis
Development of new methods of restoring other charasttesiof fractals
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Fractals

Fractal is the self-similar object whose-DB D,
Fractal dimension is the valueD- which provides the finite limit
N - is number oprobeswith sizel, < d covering the object

For the Euclidean objects measure MJ) is independent of scale, and has a limit
M (8) = lim N (3) B°T = const

I|m ZI Dr = const

For Fractal objects measure tends to infinity.

M (3) = IimON(é)[BDT L o %

5
The number of N§) unlimited increases more, rapidly than decredses

In order to evaluate the speed of growth impose Hausdorféorea
and examine its behavior at- 0

M, - 0, d>D.
:IimZN:I.d M, - const, d=D,
Md — 00, d<DF
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Fractality& Multiple production

X VA
> Set of hadrons produced in inelastic interaction is M, e :.‘.:' _-'f,. .
set of points of the three -dimensional phase-space | .°, _&.t7 " “\fer. .
(Pr.Y.0) U R
e o . e, | =
» The distribution of points in phase-space is non- ..__7;-'_’;\, / | -
uniformly and is determined by the process of e e Ny g e L
particle production Y \ i /e
e g HE
» Set of these points in the phase-space are == ) =
considered as a fractal and characterized by the | 4
fractal dimension, which depends on interaction o~ e “_. :
dynamics 7t/
” N~ P
o dl Ly e N
AYEIIN

Determination of fractal dimensions is important
for reconstruction of interaction dynamics
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Scenario of Parton Shower and Hadronization

Fractal dimension D,
N,
= articles . N

S aTeene lim 1> = const

50 4=

4 = 4 partons

2= 2 partons (]/S)DF + (2/5)DF -
D. =0.5639..

Level

| | | | | . | . Box dimension

5 i INN()

Fractal with dependent partition on base P=5

b
> Outgoing from hard process parton branchba o0 In(é)

_ iSS| i D, =In3/In5=0.6826..
> 6,- admissible opening angle n=-In(tg(S/2)) b /
Black rectangles —permissible ranges Power L aw
> The range (consisting of two parts) is considered N =N
r p

as uniform object (dependent parts).

s=In2/In5=0.4307..

— JINE

> Further branching and hadronization keeps spatiattsire.
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Models of fractals formation

> Fractal with dependent partition of parts:

- permissible ranges consisting of arbitrary nundfgyarts

and are not in contact _
- parts are divided as uniform object (dependently)

Level

» Fractal with independent partition of parts:
- permissible ranges consisting of one part

- permissible parts are divided independently

Level

» Fractal with the combined partition of parts: e s s s 1o 1328 4%
- the permissible ranges consist of arbitrary ) THRE
number of parts and can come into contact 0 -

- parts belonging to the same range are dividedrokpdly =

and different ranges - independently 1 N —

0 -----

5 -4 -3 2 -1 0 1 2 3 4

5
n

D.= D, for fractal with independent partition of parts
De =D, for fractal with dependent and combined partitibparts
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BC, PaCmethods of fractal analysis

=

Read out data {X = n, py, ...} of particles in events

. Construction ofP-adic Coverages

Each coverage is a set of distributions of variable
The number of bins Mn distributions

are changed as a degreel@fsis P:M_=(P)

BC: as arule aC:P =2 ,

Count a number of non-zero bins(lev,P):

Saturation condition: N(lev,P) = N(lev+1,P) defines
the number of levels, = lev

Base PaC method:

Processed data for which N(lev,P) = N(E\P)
Finding slope parameteD. andy?

Dependence ofn N vs.In M for each P-adic coverage
Accuracy conditiong?(P) :

The set of particles is fractal (P and R(P) )

BC, PaC — determine the box dimension
BC has two parameters: Parl=P, Pgi2=

PaC has two parameters: ParlzPPar2x3,

T. Dedovich

PaC

DT, M.Tokarev
Phys.Part.Nucl.Lett.
8 (2011) 521

BC — Box Counting
PaC — P-adic Coverage




SePaUnethod of fractal analysis

SePaC

1. Read out data {n; } of particles in event DT. M.Tokarev
2. Construction ofP-adic Coverage® = 3 Phys.Part.Nucl.Lett.
_ 9(2011) 552
3. Counta number of non-zero bimglev,P):
saturation condition N(lev,P) = N(lev+1,P) definesnber of leveldN, = lev
4. Base SePaC method SePaC — System
Processed data for which,(Mv,P) = N(1,P) of the Equation
5. Analysisof system of equations for verification fofpothesis  Of P-adic Coverage

of independent/dependent partition:

le
. . D _
- Constructiorof asystemof the equations for all levels Z(d,e\,) P =1
N, and ¢, are number and length of permissible ranges =L

- Finding solution DZ®V by using a dichotomy method for each level

- Defining average value <f5V> and deviatiom D¢V

" AD} . .
- Accuracy condition z D.eFV > set of particles is fractal
F

SePaC — determine the fractal dimension
SePaC method has two parameters: Pafl-Par2=Dev
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Results of analysis bBC, PaCandSePaGnethods

» Fractals with independent partition: the base PaC and o - ToKarey
ys.Part.Nucl.Lett.
SePaC methods are preferable 2013 6(183) p491-500
» Fractals with dependent partition: the base SePaC and
modified PaC methods are preferable DT, M. Tokarev

: . .. . Phys.Part.Nucl.Lett.
»  Fractals with combined partition: the modified SePaC 2013 6(183) p.791-803

method is preferable

A more flexible procedure for general analysis
of a wide class of fractals, taking into account
peculiarities of the developed methods, is needed

T. Dedovich h—%



Two-step procedure of fractal analysis

| step: Analysis of the general data set by the base method
- determination of the optimal values of paramétar
- analysis of the data using the base method
with selected parameters
- determination of characteristics of reconstructedt&iac
- selection of unreconstucted fractals

Il step: Analysis of unreconstucted fractals by the modified me&tho

T. Dedovich



Data sample of fractal analysis

1857 fractals
(fractals with independent, dependent and combaetition)

1857 random data sets
(multiplicity distributions for randonand fractal data sets are equal)

Reconstruction efficiency and impurities
Efficiency = portion of reconstructed fractalBor, .

Impurities =portion of reconstructed random sets as a fratdal,
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Search Procedure for Method Parameée?er

1. Construction of D N,,, P distributiongor differentPar

2. Calculation of functiom\D,, (Pai) for V=D, N, P.

a and bare bin content for adjacent distributions

3. Calculation of extended functioADg,(Par)

ADg, (Par) =AD,_(Par)+AD,,_(Par)+AD,(Par)

Nbin

AD, (Par)=) |a —h |
i=1

4. Choiceof the valueParon the basis of analysis of functichD ¢, (Par)
Correspondence of number of and value of Par

NX% | 1 2 3 4 5 6 7 8 | 9 | 10 | 12 | 12 | 13 | 14 | 15
X2, | 1013 | 1022 | 107 | 101 | 10° | 108 | 107 | 10% | 105 | 104 | 10% | 0.01 | 0.02| 0.03| 0.04
Nx%, | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
X3, | 005 | 006 | 007 o008f 004 01 04 03 o4 o0 o6 7 08 09 Lo
Nx%,, | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39| 40 | 41 | 42 | 43 | 44 | 45
X3 | 11| 12 | 13| 14| 15| 16| 170 184 1p 20 21 2 283 24 25
Noe, 1 2 3 4 5 6 7 8 9 10 11 12 13
Dev | 108 | 105 | 104 | 2.10¢ | 5.10¢ | 103 | 2.10° | 5-10° | 102 | 0.02 | 003 | 0.04| 0.05
Npe, 14 | 15 16 17 18 19 20 21 22 | 23 24 25 26
Dev | 006 | 007 | 008| 0.09 0.1 07 o3 04| 0F 06 0.f 0J8
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BC-method

S T 05 101620 25730 35 40 -
Nxfim N i
»  For fractal:choicex?; . as the minimal value on the
us ———— second I:)Iateau OADc, (NX?,, ) corresponds the
ok maximal Pog,,.
- | i-porg) »  Shapes\D. (Nx3,,) for fractal and random set are
S 06r similar
& o4 »  Shapes Pgr,.and Pog,are different
02 | R »  Shapes Pgrac(l-Po%m) allows you to define a valid
P STV HNre::. ot RTI rangex?;,, at which Pog,,is maximal and Py, 4is
0 &5 10 15 20 25 B0 35 4?43(:15 m|n|ma|
" > X%, established for fractal corresponds to this range
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PaCGmethod (1st-step)

[ ]
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» Choice R, as the minimal value on the plateausid,,(P,,.,) corresponds to the
maximal Pog,,.

» Choicex?
» 1st step of PaC-method restore 52% fractal frota daalysis

is arbitrary (shapeaDe,(NX?,) and Pog,,(NX?,) does not depend o,

lim

» 1st step of PaC-method does not restore the randoas sefractal (no impurities !)
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and random sets haweplateu o' 2-
Shapes ofADg, (NXx?;,,) for fractal s

25|
F PaC-2step
PaCGmethod (2nd-ste ;
g 1s5F
For fractal choice 0;
P.x @S the minimal value on the ¢
pféteau OfADg,(Pysax ) 0;5_"'4"'é"'g""1'0"'1'2"'111"'1}5
XZim @S the value of second peak on Pray
A[BExt(N)(Z-m) corresponds the
maximal Pog,,. :
3 a3 " PaC-2step
Shapes oD, (P, for fractal _ 25 Rand

lim

and random sets are differdt 13

ADg,(NX?,) has two peaks then ost

data set is fractal O
Shapes Pgr,.and Pog_ ,are Ny
different o

Shape Poy,(1-Pok_ . allows you
to define a valid rangg?; . at which
Por__Js maximal and Pgt,_,is
minimal

X3 €stablished for fractal
corresponds to this range




SePa@method (1st step)

16 1.2
35 F 1'4 3 N SePaC-1step
3 SePFaC-1sItep 1-25 Se;z;i:;;lstep n Fractal
racta < -
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» Choice R, as the minimal value on the plateausid,,(P,,.,) corresponds to the
maximal Pog,,.

» Choice Devis arbitrary (shapa®,,(Ny.,) and Pat,. (Np.,) does not depend on Dev
» 1step of SePaC-method restore 70% fractal fronmyaisal

» 1step of SePaC-method does not restore the randces sdractal (no impurities !)
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SePa@nethod (2-step)

>

1.5

For fractal choice 1

Puax @S the minimal value on the
plateau of AD,(P,,...) ’

Dev as the value of second peak on

SePaC-2step
Random

Coon by b a b v by by by a by g by o 1
2 4 6 8 10 12 14 16 18 20

PMax

ADg,(Np.,) corresponds the
maX|ma[I)eI¥>o,l_:raC

and random setwe different < sl

Shapes ofAD,(Np,,) for fractal ol
and random sets are differeqt 1st !
peak ofADg,(Np,,) is smeared the ;&
data set is a fractal) ’

Shapes Pgr,.and Pog_ ,are
different

Shape Py, (1-Pok_ ) allows you

to define a valid range Dev at which
Por__Js maximal and Pgt_,is
minimal

Dev established for fractal
corresponds to this range

1.6 _ SePaC-2step

14 F Random

% 12F

Shapes oAD.,(P,,,,) for fractal & "¢

Dev




Comparison of Methods

Method Pof,.. |POrg.q POI(1-PoK)
BC 0.95 0.08 0.88
2-step PaC| 1.0 0.12 0.90
2-step SePaC 1.0 0.03 0.97

Two step procedure of SePatethod
has the advantage for fractal analysis

- fully fractals reconstruction

- lowest impurity
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Summary

Two-step procedure of fractal analysis
for PaCu SePaC methods was developed

The search procedure of optimal values of parameters
for BC, PaC and SePaC methods is developed.

Comparision of the fractal analysis methods for fractals
and random data set is carried out.

The two-step procedure of fractal analysis for SePaC
method has advantage before other ones

- fully fractal reconstruction

- lowest impurity
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