< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Measurement of cross-sections of yttrium (n,xn) threshold reactions by means of gamma spectroscopy XXII ISHEPP

P. Chudoba ^{1,2}, S. Kilim ³, Polish ³ and Czech ¹ group

¹Nuclear Physics Institute of the ASCR, v. v. i., Rez 130, 250 68 Rez, Czech Republic

²Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Praha 2, Czech Republic

³National Centre for Nuclear Research, Otwock-Świerk 05-400, Poland

16.9.2014

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Motivation of measurement

Necessity of fast neutron field monitoring in facilities like

- Accelerator driven systems (ADS)
- Neutron spallation sources
- Future fusion reactors and fast reactors

Why yttrium?

- Products of (n,xn) reactions on yttrium are easily identifiable
- Half-lives of the products have good length for $\gamma\text{-spectrometry}$
- γ transitions are intensive enough for detection and are well separated from each other

Reaction	<i>E_{thr}</i> [MeV]	$T_{\frac{1}{2}}$	E_{γ} [keV]	I_{γ} [%]
⁸⁹ Y(n,2n) ⁸⁸ Y	11.6	106.626 d	898.042	93.683
			1836.063	99.24
⁸⁹ Y(n,3n) ⁸⁷ Y	21.1	79.8 h	388.531	82.2
			484.805	89.845
89 Y(n,3n) 87m Y	21.6	13.37 h	380.79	78.055

γ -spectroscopic methods

- With accurate knowledge of isotopic composition, it is possible to measure cross-section
- With known cross-section the integral of the beam is possible to determine
- Investigated reactions: ${}^{89}Y(n,2n){}^{88}Y, {}^{89}Y(n,3n){}^{87}Y$
- Equations for determining of cross-section in case of simple decay

$$\begin{split} N_{yield} &= \frac{S_{peak} \cdot C_{abs}\left(E\right)}{I_{\gamma} \cdot \varepsilon_{p}\left(E\right) \cdot COI\left(E\right) \cdot C_{area}} \frac{t_{real}}{t_{live}} \frac{e^{\lambda \cdot t_{0}}}{1 - e^{-\lambda \cdot t_{real}}} \frac{\lambda \cdot t_{irr}}{1 - e^{-\lambda \cdot t_{irr}}},\\ \sigma &= \frac{N_{yield} \cdot S \cdot A \cdot B_{a}}{N_{n} \cdot N_{A} \cdot m}. \end{split}$$

◆ロト ◆昼 → ◆ 臣 ト ◆ 臣 - ● ○ ○ ○ ○

Self-absorption correction - $C_{abs}(E)$

Square emitter correction - C_{area}

$$C_{\text{area}} = rac{arepsilon_{ ext{foil}}}{arepsilon_{ ext{point}}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Experimental arrangement

Cross-section results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Detector efficiency simulations

Comparison between experiment and simulation

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Comparison between experiment and simulation

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

Decay of ⁸⁷Y and ⁸⁷mY

In case of decay of $^{87}{\rm Y}$ and $^{87m}{\rm Y}$ the shape is a little more complicated.

999

Correction for decay during cooling and irradiation

- In case of ⁸⁹Y(n,3n)⁸⁷Y reaction the ground and isomeric states are produced simultaneously
- For determination of ⁸⁷Y ground state production it is necessary to involve ^{87m}Y decay to the ground state.

$$N_{g0} = \frac{S_{peak} \cdot C_{abs}\left(E\right) \cdot B_{a} \cdot e^{\lambda_{g} \cdot t_{0}}}{I_{\gamma} \cdot \varepsilon_{p}\left(E\right) \cdot COI\left(E\right) \cdot C_{area}} \frac{t_{real}}{t_{live}} \frac{1}{\left(1 - e^{-\lambda \cdot t_{real}}\right)} + \frac{\lambda_{m} \cdot N_{m0}}{\lambda_{g} - \lambda_{m}} \left(1 - e^{\left(\lambda_{g} - \lambda_{m}\right) \cdot t_{0}}\right)$$

$$C_{irr} = \frac{P_g \cdot t_{irr}}{N_{g0}} = \frac{\lambda_g \cdot t_{irr}}{1 - e^{-\lambda_g \cdot t_{irr}}} - \frac{N_{yield,m}}{N_{g0} \cdot (1 - e^{-\lambda_g \cdot t_{irr}})} \left(1 - \frac{\lambda_m \cdot e^{-\lambda_g \cdot t_{irr}} - \lambda_g \cdot e^{-\lambda_m \cdot t_{irr}}}{\lambda_m - \lambda_g}\right)$$
$$N_{yield,g} = N_{g0} \cdot C_{irr}$$

Fast neutron source

- Source based on reaction ${}^{7}Li(p,n){}^{7}Be$
- Neutron energy range 10-37 MeV
- $\bullet\,$ Source intensity $\sim 10^8 \mbox{ cm}^{-2} \cdot \mbox{s}^{-1}$
- Neutron spectrum is obtained by an MCNPX simulation

< ロ > < 同 > < 回 > < 回 >

▲■▼▲目▼▲目▼ 目 ⊙への

Model of the neutron source with samples

Two yttrium samples for each irradiation, each irradiated with gold foil:

- YN $25 \times 25 \times 0.64$ mm solid foil, distance 123 mm
- YO ⊘9×1.5 mm pill, distance 103 mm

Background subtraction

- Neutron source is not monoenergetic
- Neutron background subtraction based on folding of neutron spectrum and cross-section

$$C_{bgr} = \frac{\int\limits_{Peak} \sigma(E) \cdot N(E) \, \mathrm{d}E}{\int\limits_{Spectrum} \sigma(E) \cdot N(E) \, \mathrm{d}E} \longrightarrow C_{bgr} = \frac{\sum\limits_{i \in Peak} \sigma_i \cdot N_i}{\sum\limits_i \sigma_i \cdot N_i}$$

Measurement equipment

HPGe spectrometer CAN35

- Relative efficiency 35%
- Calibration points from 53 to 1836 keV
- Calibrated positions 3, 4, 5, 6, 7, 10, 12, 15, 17 cm
- Complete shielding

Cross-section of $^{89}Y(n,xn)$ reaction

Cross-section of $^{197}Au(n,xn)$ reaction

▲ロ▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you for your attention The experiment was supported by ERINDA^1 and CANAM^2 .

¹http://www.erinda.org ²http://canam.ujf.cas.cz