Bethe-Salpeter approach with separable potential. Review and results (Twenty Years).

V.V.Burov
S.G.Bondarenko, E.P.Rogochaya, M.V.Rzjanin, G.I Smirnov, A.Bekzhanov- JINR, Dubna A.A.Goy, V.N.Dostovalov, K.Yu.Kazakov, A.V.Molochkov, D.Shulga, S.Suskov, S.Yuriev FESU, Vladivostok, Russia
S.M.Dorkin- Dulbna Univ., A.V.Shebeko - Kharkov, M.Beyer - RU, Rostock, W.-Y Pauchy Hwang - NTU Taipei, Taiwan,
N.Hamamoto, A.Hosaka, Y.Manabe, H.Toki -RCNP, Osaka, Japan

1. Introduction
2. Basic Definitions
3. Separable Interactions
4. Elastic Scattering
5. Inelastic Scattering
6. Deep Inelastic Scattering
7. Summary

The first publication: S.G. Bondarenko, Burov V.V., S.M. Dorkin, Elastic Form factors of the Deuteron in Bethe Salpeter Approach and Charge Form Factor of Neutron, Proceedings of the XII International Seminar on High Energy Physics Problems, JINR, Dubna, 1994, p. 90.

Bethe-Salpeter Approach. Twenty Years.

Introduction

* Study of static and dynamic electromagnetic properties of light nuclei enables us to understand more deeply a nature of strong interactions and, in particular, the nucleon - nucleon interaction.
* This investigations are connected to a large amount of experimental data, and also with planned new experiments, which will allow to move in region of the large transfer momenta in elastic, inelastic, and deep-inelastic lepton - nucleus reactions.
* At such energies an assumptions of nucleus as a nucleon system is not well justified. For this reason the problems to study in intermediate energy region the nonnucleonic degrees of freedom (Δ-isobars, quarks etc.) and Mesonic Exchange Currents (MEC) are widely discussed.

Introduction

* However, in spite of the significant progress being achieved in this way, the relativistic effects (which \boldsymbol{a} priori are very important at large transfer momenta) are needed to be included.
* Other actively discussed problem is the extraction of the information about the structure bound nucleons from experiments with light nuclei. Such tasks require to take into account relativistic kinematics of reaction and dynamics of $N N$ interaction. For this reason construction of covariant approach and detailed analysis of relativistic effects in electromagnetic reactions with light nuclei are very important and interesting.
* Bethe - Salpeter approach give a possibility to take into account relativistic effects in a consistent way.

First Stage. Bethe-Salpeter Formalism

Bethe-Salpeter Formalism

* Let us define full two particle Green Function:
$\mathrm{G}_{\alpha, \beta ; \gamma, \delta}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=-\langle 0| T\left[\psi_{\alpha}\left(x_{1}\right) \psi_{\beta}\left(x_{2}\right) \bar{\psi}_{\gamma}\left(y_{1}\right) \bar{\psi}_{\delta}\left(y_{2}\right)\right]|0\rangle$,
* Bethe-Salpeter Equation for G:

$$
\begin{aligned}
& \mathrm{G}_{\alpha, \beta ; \gamma, \delta}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=\mathrm{G}^{(0)}{ }_{\alpha, \beta ; \gamma, \delta}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)+ \\
& +i \int \prod_{k=1}^{4} d w_{k} \mathrm{G}^{(0)}{ }_{\alpha, \beta ; \sigma, \rho}\left(x_{1}, x_{2} ; w_{1}, w_{2}\right) \times \\
& \times K_{\sigma, \rho ; \lambda, \omega}\left(w_{1}, w_{2} ; w_{3}, w_{4}\right) \mathrm{G}_{\lambda, \omega ; \gamma, \delta}\left(w_{3}, w_{4} ; y_{1}, y_{2}\right),
\end{aligned}
$$

where

$$
\underbrace{(0)} \alpha, \beta ; \gamma, \delta\left(x_{1}, x_{2}, y_{1}, y_{2}\right)={\underset{F S \alpha \gamma}{\prime}}_{(1)}\left(x_{1}-x_{2}\right) S_{F \beta \delta}^{\prime}(2)\left(y_{1}-y_{2}\right)
$$

$\%$ Let us make Fourier transformation of $K, G, G^{(0)}$:
$V\left(p^{\prime}, p ; P\right)=\int d x_{1} d x_{2} d y_{1} d y_{2} K\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) \times$
$\exp \left[i P\left(\frac{x_{1}+x_{2}}{2}-\frac{y_{1}+y_{2}}{2}\right)+i p^{\prime}\left(x_{1}-x_{2}\right)-i p\left(y_{1}-y_{2}\right)\right]$,
where P is total, $p\left(p^{\prime}\right)$ are relative 4 -momentum

$$
\begin{array}{ll}
P=q_{1}+q_{2} & q_{1}=P / 2+p \\
p=\left(q_{1}-q_{2}\right) / 2 & q_{2}=P / 2-p
\end{array}
$$

The expressions for \boldsymbol{G} and $G^{(0)} \begin{gathered}\boldsymbol{q}_{2} \\ \text { are similar. }\end{gathered}$

* Full Green function for two particle system is:

$$
\begin{aligned}
& \mathrm{G}_{\alpha \beta ; \gamma \delta}\left(p^{\prime}, p ; P\right)=S_{F \alpha \gamma}^{\prime}{ }^{(1)}\left(\frac{P}{2}+p\right) S_{F \beta \delta}^{\prime}{ }^{(2)}\left(\frac{P}{2}-p\right) \delta^{(4)}\left(p^{\prime}-p\right)+ \\
& +i S_{F a \varepsilon}^{\prime}{ }^{(1)}\left(\frac{P}{2}+p^{\prime}\right) S_{F \beta \lambda}^{\prime}{ }^{(2)}\left(\frac{P}{2}-p^{\prime}\right) \int \frac{d k}{(2 \pi)^{4}} V_{\varepsilon \lambda ; \nu \mu}\left(p^{\prime}, k ; P\right) \mathrm{G}_{\nu \mu ; \gamma \delta}(k, p ; P) .
\end{aligned}
$$

* The full one particle Green function is:

$$
S_{F \alpha \gamma}^{\prime}{ }^{(1)}(p)=\frac{1}{p \cdot \gamma-m-\Sigma(p)+i 0}
$$

We will use propagators without mass operator:

$$
S_{F \alpha \beta}^{\prime}(p) \Rightarrow S_{\alpha \beta}(p)
$$

T-matrix

\approx Let us introduce T-matrix:

$$
G V=G^{(0)} T
$$

*The BSE for T-matrix is:

$$
\begin{aligned}
& T_{\alpha \beta ; \delta \gamma}\left(p^{\prime}, p ; P\right)=V_{\alpha \beta ; \delta \gamma}\left(p^{\prime}, p ; P\right)+i \int \frac{d k}{(2 \pi)^{4}} V_{\alpha \beta ; \varepsilon \lambda}\left(p^{\prime}, k ; P\right) \times \\
& \quad \times S_{\varepsilon \eta}^{(1)}\left(\frac{P}{2}+k\right) S_{\lambda \rho}^{(2)}\left(\frac{P}{2}-k\right) T_{\eta \rho ; \delta \gamma}(k, p ; P)
\end{aligned}
$$

* Thus a bound state corresponds to a pole in a T-matrix at $P^{2}=M^{2}$ (M is the mass of the bound state):

$$
T_{\alpha \beta ; \delta \gamma}\left(p^{\prime}, p ; P\right)=\frac{\Gamma_{\alpha \beta}\left(P, p^{\prime}\right) \bar{\Gamma}_{\gamma \delta}(P, p)}{P^{2}-M^{2}}+R_{\alpha \beta ; \delta \gamma}\left(p^{\prime}, p ; P\right),
$$

$R_{\alpha \beta ; \delta \gamma}\left(p^{\prime}, p ; P\right)$ is regular at $P^{2}=M^{2}$ function,
$\Gamma_{\alpha \beta}(P, p)$ is a vertex function.

The normalization condition follows from: $\langle D, P| J_{\mu}(0)|D, P\rangle=2 i P_{\mu}$

$$
2 P_{\mu}=i \int \frac{d k}{(2 \pi)^{4}} \bar{\Gamma}(P, k) \frac{\partial}{\partial P^{\mu}}\left[S^{(1)}\left(\frac{P}{2}+k\right) S^{(2)}\left(\frac{P}{2}-k\right)\right]_{P^{2}=M^{2}} \Gamma(P, k) .
$$

BS equation for Amplitude:
$\Phi_{\alpha \beta}\left(P, p^{\prime}\right)=i S_{\alpha \eta}^{(1)}\left(\frac{P}{2}+p^{\prime}\right) S_{\beta \rho}^{(2)}\left(\frac{P}{2}-p^{\prime}\right) \int \frac{d k}{(2 \pi)^{4}} V_{\eta \rho ; \varepsilon \lambda}\left(p^{\prime}, k ; P\right) \Gamma_{\varepsilon \lambda}(P, k)$.

1. E.E. Salpeter and H.A.Bethe, Phys.Rev. C84(1951) 1232
2. S. Mandelstam, Proc.Roy.Soc. 233A (1955) 248.
3. S.Bondarenko et.al, Prog.Part.Nucl.Phys. 48(2002)449;
4. S.Bondarenko et.al, NP, A832(2010)233; NP, A848 (2010) 75; NP, B219-220c (2011) 216; FBS, 49 (2011) 121; PLB, 705(2011)264; JETP Letters, 94(2011)800.

Second Stage. Separable Anzats

Solution of BS Equation

* Separable Kernel of Interaction
- BSE for T-matrix after partial expansion can be written as:

$$
\begin{gathered}
T_{\alpha \beta}\left(p_{0}^{\prime},\left|\vec{p}^{\prime}\right|, p_{0},|\vec{p}| ; s\right)=V_{\alpha \beta}\left(p_{0}^{\prime},\left|\vec{p}^{\prime}\right|, p_{0},|\vec{p}| ; s\right)+\frac{i}{2 \pi^{2}} \int d q_{0} \vec{q}^{2} d|\vec{q}| \times \\
\sum_{\gamma \delta} V_{\alpha \gamma}\left(p_{0}^{\prime},\left|\vec{p}^{\prime}\right|, q_{0},|\vec{q}| ; s\right) S_{\gamma \delta}\left(q_{0},|\vec{q}| ; s\right) T_{\delta \beta}\left(q_{0},|\vec{q}|, p_{0},|\vec{p}| ; s\right)
\end{gathered}
$$

- Separable anzats:

$$
V_{a \beta}\left(p_{0}^{\prime}\left|\overrightarrow{p^{\prime}}\right|, p_{0} \mid \vec{p} ; s\right)=\sum_{i=1}^{N} \lambda_{i j_{i}}^{\left(g_{i}^{(\alpha)}\right.}\left(p_{0}^{\prime}, \mid \vec{p}^{\prime}\right) g_{j}^{(\beta)}\left(p_{0},|\vec{p}|\right), \lambda_{i j}=\lambda_{j i}
$$

Then for \boldsymbol{T} - matrix we can write:

$$
T_{\alpha \beta}\left(p_{0}^{\prime},\left|\vec{p}^{\prime}\right|, p_{0},|\vec{p}| ; s\right)=\sum_{i j=1}^{N} \tau_{i j}(s) g_{i}^{(\alpha)}\left(p_{0}^{\prime},\left|\vec{p}^{\prime}\right|\right) g_{j}^{(\beta)}\left(p_{0},|\vec{p}|\right) .
$$

Substitution \boldsymbol{V}, T in BSE for \boldsymbol{T}-matrix we can find $\tau_{i j}(s)$:

$$
\tau_{i j}^{-1}(s)=\lambda_{i j}^{-1}-H_{i j}(s),
$$

where the $H_{i j}(s)$ can be written as:

$$
H_{i j}(s)=\frac{i}{2 \pi^{2}} \sum_{\alpha \beta} \int d q_{0} \vec{q}^{2} d|\vec{q}| S_{\alpha \beta}\left(q_{0},|\vec{q}| ; s\right) g_{i}^{(\alpha)}\left(q_{0},|\vec{q}|\right) g_{j}^{(\beta)}\left(q_{0},|\vec{q}|\right) .
$$

Then radial part of BSA has following form:

$$
\phi_{\alpha}\left(p_{0},|\vec{p}|\right)=\sum_{\beta} \sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{N}} S_{\alpha \beta}\left(p_{0},|\vec{p}| ; s\right) \lambda_{i j} g_{i}^{(\beta)}\left(p_{0},|\vec{p}|\right) c_{j}(s),
$$

where coefficients $c_{j}(s)$ satisfy the equation:

$$
c_{i}(s)-\sum_{\substack{k, j=1 \\ \text { ISHEPP XXII }}}^{N} H_{i k}(s) \lambda_{k j} c_{j}(s)=0 .
$$

$N N$-scattering

* Let us consider $N N$-scattering in ${ }^{3} S_{1}-{ }^{3} D_{1}$-channel (${ }^{2 S+1} L_{J}^{\rho}$ notation). In this case nucleons are on mass shell:

$$
p_{0}=p_{0}^{\prime}=0,|\vec{p}|=\left|\vec{p}^{\prime}\right|=\left|\vec{p}^{*}\right|=\sqrt{s / 4-m^{2}}=\sqrt{m \mathrm{E}_{l a b} / 2},
$$

and T-matrix can be parameterized as:

$$
T^{(0 s)}=-\frac{2 i}{\left|\vec{p}^{*}\right| \sqrt{s}}\left(\begin{array}{cc}
\cos 2 \varepsilon e^{2 i \delta_{S}}-1 & i \sin 2 \varepsilon e^{i\left(\delta_{S}+\delta_{D}\right)} \\
i \sin 2 \varepsilon e^{i\left(\delta_{s}+\delta_{D}\right)} & \cos 2 \varepsilon e^{2 i \delta_{D}}-1
\end{array}\right)
$$

Here $\delta_{S}\left(\delta_{D}\right)$ are phase shifts of ${ }^{3} S_{1}\left({ }^{3} D_{1}\right)$ waves, \mathcal{E} - is mixing parameter. For low energy $N N$ - scattering we can express phase shift through scattering length \boldsymbol{a}, effective radius of interaction $\boldsymbol{r}_{\mathbf{O}}$.

$$
\left|\vec{p}^{*}\right| \cot \delta_{S}(s)=-\frac{1}{a}+\frac{r_{0}}{2}\left|\vec{p}^{*}\right|^{2}+O\left(\left|\vec{p}^{*}\right|^{3}\right)
$$

$$
\text { Vertex function } g_{s_{s i t}}\left(p_{0} \equiv p_{4},|\vec{p}| \equiv p\right) \text {. }
$$

Vertex function $g_{s_{D_{1}^{+}}}\left(p_{0} \equiv p_{4},|\vec{p}| \equiv p\right)$.

Third Stage. Problem of poles.

Relativistic description

Yamaguchi

$$
\boldsymbol{g}(|\boldsymbol{p}|)=\frac{1}{\boldsymbol{p}^{2}+\beta^{2}}
$$

$$
\boldsymbol{p}^{2} \rightarrow-p^{2}=-p_{0}^{2}+\boldsymbol{p}^{2} \Rightarrow \boldsymbol{g}_{p}(p)=\frac{1}{-p^{2}+\beta^{2}} \xrightarrow{\text { cencrapor-mass }} \frac{1}{-p_{0}^{2}+\boldsymbol{p}^{2}+\beta^{2}+i 0}
$$

Y. Avishai, T. Mizutani, Nucl. Phys. A 338 (1980) 377-412

$$
\begin{aligned}
Q=p-\frac{P \cdot p}{s} P & \Rightarrow \boldsymbol{g}_{Q}(p)=\frac{1}{-Q^{2}+\beta^{2}} \stackrel{\text { center-of-mass }}{\rightarrow} \frac{1}{p^{2}+\beta^{2}} \\
\boldsymbol{g}_{p} & \rightarrow p_{0}= \pm \sqrt{\boldsymbol{p}^{2}+\beta^{2}} \mp \boldsymbol{i} 0 \\
\boldsymbol{g}_{Q} & \rightarrow \text { No poles }
\end{aligned}
$$

K. Schwarz, J. Frohlich, H.F.K. Zingl, L. Streit, Acta Phys. Austr. 53 (1981) 191-202

$$
\boldsymbol{g}_{p}(p)=\frac{1}{\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta^{2}\right)^{2}+\alpha^{4}}
$$

Form factors of the separable kernel

The uncoupled channels

$3 P_{0},{ }_{1} P_{1}, 3 P_{1}:$

$$
\begin{gathered}
\boldsymbol{g}_{1}^{[P]}(p)=\frac{\sqrt{-p_{0}^{2}+\boldsymbol{p}^{2}}}{\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{1}^{2}\right)^{2}+\alpha_{1}^{4}} \\
\boldsymbol{g}_{2}^{[P]}(p)=\frac{\sqrt{\left(-p_{0}^{2}+\boldsymbol{p}^{2}\right)^{3}}\left(p_{c 2}-\boldsymbol{p}_{0}^{2}+\boldsymbol{p}^{2}\right)}{\left(\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{2}^{2}\right)^{2}+\alpha_{2}^{4}\right)^{2}} \\
\boldsymbol{g}_{1}^{[S]}(p)=\frac{\left(p_{c 1}-p_{0}^{2}+\boldsymbol{p}^{2}\right)}{\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{1}^{2}\right)^{2}+\alpha_{1}^{4}} \\
\boldsymbol{g}_{2}^{[S]}(p)=\frac{\left(p_{0}^{2}-\boldsymbol{p}^{2}\right)\left(p_{c 2}-p_{0}^{2}+\boldsymbol{p}^{2}\right)^{2}}{\left(\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{2}^{2}\right)^{2}+\alpha_{2}^{4}\right)^{2}} \\
\boldsymbol{g}_{3}^{[S]}(p)=\frac{\left(p_{0}^{2}-\boldsymbol{p}^{2}\right)}{\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{3}^{2}\right)^{2}+\alpha_{3}^{4}}
\end{gathered}
$$

Form factors of the separable kernel

The uncoupled channels

${ }^{1} D_{2}$:

$$
\begin{aligned}
& g_{1}^{[D]}\left(p_{0}, \mathbf{p}\right)=\frac{-p_{0}^{2}+\mathbf{p}^{2}}{\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{1}^{2}\right)^{2}+\alpha_{1}^{4}} \\
& g_{2}^{[D]}\left(p_{0}, \mathbf{p}\right)=\frac{\left(-p_{0}^{2}+\mathbf{p}^{2}\right)^{2}\left(-p_{0}^{2}+\mathbf{p}^{2}+p c_{2}\right)}{\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{21}^{2}\right)^{2}+\alpha_{21}^{4}\right)\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{22}^{2}\right)^{2}+\alpha_{22}^{4}\right)} \\
& g_{3}^{[D]}\left(p_{0}, \mathbf{p}\right)=-\frac{\left(-p_{0}^{2}+\mathbf{p}^{2}\right)^{3}\left(-p_{0}^{2}+\mathbf{p}^{2}+p c_{3}\right)^{2}}{\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{3}^{2}\right)^{2}+\alpha_{3}^{4}\right)^{3}} \\
& g_{4}^{[D]}\left(p_{0}, \mathbf{p}\right)= \\
& \frac{\left(-p_{0}^{2}+\mathbf{p}^{2}\right)^{4}\left(-p_{0}^{2}+\mathbf{p}^{2}+p c_{4}\right)^{3}}{\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{41}^{2}\right)^{2}+\alpha_{41}^{4}\right)^{2}\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{42}^{2}\right)^{2}+\alpha_{42}^{4}\right)\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{43}^{2}\right)^{2}+\alpha_{43}^{4}\right)} \\
& g_{5}^{[D]}\left(p_{0}, \mathbf{p}\right)=\frac{\left(-p_{0}^{2}+\mathbf{p}^{2}\right)^{9}}{\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{5}^{2}\right)^{2}+\alpha_{5}^{4}\right)^{5}}
\end{aligned}
$$

Form factors of the separable kernel

The uncoupled channels

${ }^{1} F_{2}$:

$$
\begin{aligned}
& g_{1}^{[F]}\left(p_{0}, \mathbf{p}\right)=\frac{\sqrt{\left(-p_{0}^{2}+\mathbf{p}^{2}\right)^{3}}\left(-p_{0}^{2}+\mathbf{p}^{2}+p c_{1}\right)}{\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{11}^{2}\right)^{2}+\alpha_{11}^{4}\right)\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{12}^{2}\right)^{2}+\alpha_{12}^{4}\right)} \\
& g_{2}^{[F]}\left(p_{0}, \mathbf{p}\right)=\frac{\sqrt{\left(-p_{0}^{2}+\mathbf{p}^{2}\right)^{5}}\left(-p_{0}^{2}+\mathbf{p}^{2}+p c_{2}\right)^{2}}{\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{21}^{2}\right)^{2}+\alpha_{21}^{4}\right)^{2}\left(\left(p_{0}^{2}-\mathbf{p}^{2}-\beta_{22}^{2}\right)^{2}+\alpha_{22}^{4}\right)}
\end{aligned}
$$

$$
\boldsymbol{g}_{1}^{[S]}(p)=-\frac{\left(p_{c 1}-p_{0}^{2}+\boldsymbol{p}^{2}\right)}{\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{1}^{2}\right)^{2}+\alpha_{1}^{4}}
$$

$$
\boldsymbol{g}_{3}^{[S]}(p)=\boldsymbol{g}_{4}^{[S]}(p)=\boldsymbol{g}_{1}^{[D]}(p)=\boldsymbol{g}_{2}^{[D]}(p)=0
$$

$$
\boldsymbol{g}_{2}^{[S]}(p)=-\frac{\left(p_{0}^{2}-\boldsymbol{p}^{2}\right)\left(p_{c 2}-p_{0}^{2}+\boldsymbol{p}^{2}\right)^{2}}{\left(\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{2}^{2}\right)^{2}+\alpha_{2}^{4}\right)^{2}}
$$

$$
\boldsymbol{g}_{3}^{[D]}(p)=\frac{\left(p_{0}^{2}-\boldsymbol{p}^{2}\right)\left(p_{c 3}-p_{0}^{2}+\boldsymbol{p}^{2}\right)^{2}}{\left(\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{31}^{2}\right)^{2}+\alpha_{31}^{4}\right)\left(\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{32}^{2}\right)^{2}+\alpha_{32}^{4}\right)}
$$

$$
\boldsymbol{g}_{4}^{[D]}(p)=\frac{\left(p_{0}^{2}-\boldsymbol{p}^{2}\right)}{\left(p_{0}^{2}-\boldsymbol{p}^{2}-\beta_{4}^{2}\right)^{2}+\alpha_{4}^{4}}
$$

The vertex functions of the deuteron

$$
\begin{array}{ll}
\boldsymbol{g}_{3_{S_{1}}}(p)=\left(c_{1} \lambda_{11}+c_{2} \lambda_{12}+c_{3} \lambda_{13}+c_{4} \lambda_{14}\right) \boldsymbol{g}_{1}^{[S]}(p) & \boldsymbol{g}_{3^{D_{1}^{*}}}(p)=\left(c_{1} \lambda_{13}+c_{2} \lambda_{23}+c_{3} \lambda_{33}+c_{4} \lambda_{34}\right) \boldsymbol{g}_{3}^{[D]}(p) \\
+\left(c_{1} \lambda_{11}+c_{2} \lambda_{22}+c_{3} \lambda_{23}+c_{4} \lambda_{24}\right) \boldsymbol{g}_{2}^{[S]}(p) & +\left(c_{1} \lambda_{14}+c_{2} \lambda_{24}+c_{3} \lambda_{34}+c_{4} \lambda_{44}\right) \boldsymbol{g}_{4}^{[D]}(p)
\end{array}
$$

The normalization

9/15/2014

$$
p_{l}=\frac{\boldsymbol{i}}{2 M_{d}(2 \pi)^{4}} \int d k_{0} \int \boldsymbol{k}^{2} d|\boldsymbol{k}| \frac{\left(E_{\boldsymbol{k}}-M_{\boldsymbol{d}} / 2\right)\left[\boldsymbol{g}_{\boldsymbol{l}}\left(k_{0}, \boldsymbol{k} \mid\right)\right]^{2}}{\left(\left(M_{\boldsymbol{I}} / 2-E_{\boldsymbol{k}}+\boldsymbol{i} 0\right)^{2}-k_{0}^{2}\right)^{2}}
$$

	$a_{\mathrm{s}}(\mathbf{f m})$	$\mathrm{r}_{0 \mathrm{~s}}(\mathbf{f m})$
MY3	-23.750	2.70
MYQ3	-23.754	2.78
Experiment	$-23.748(10)$	$2.75(5)$

$\mathbf{3 S}_{\mathbf{1}}^{+}{ }^{+} 3 \mathbf{D}_{\mathbf{1}}^{+}:$		$\mathrm{p}_{\mathrm{d}}(\%)$	$\mathrm{a}_{\mathrm{t}}(\mathrm{fm})$	$\mathrm{r}_{0 \mathrm{t}}(\mathrm{fm})$	$\mathrm{E}_{\mathrm{d}}(\mathrm{MeV})$
	MY4	6	5.417	1.75	2.2246
	MYQ4	6	5.417	1.75	2.2246
	CD-Bonn	4.85	5.4196	1.751	2.224575
	Graz II	4.82	5.42	1.78	2.225
	Experiment	-	$5.424(4)$	$1.759(5)$	$2.224644(46)$

O. Dumbrajs et al., Nucl Phys. B 216 (1983) 277

Fourth Stage. Inelasticity.

To describe the influence of the inelastic channels into the elastic NN scattering the inelasticity parameter is introduced.

S matrix (Arndt-Roper parametrization)

$$
\begin{gathered}
S=\frac{1-K_{i}+i K_{r}}{1+K_{i}-i K_{r}}=\eta \exp (2 i \delta) \\
K=K_{r}+i K_{i} \\
K_{r}=\tan \delta, \quad K_{i}=\tan ^{2} \rho
\end{gathered}
$$

δ - the phase shift, ρ - the inelasticity parameter.

$$
\begin{gathered}
\eta^{2}=\frac{1+K^{2}-2 K_{i}}{1+K^{2}+2 K_{i}} \\
K^{2}=K_{r}^{2}+K_{i}^{2} \\
\delta=\frac{1}{2}\left\{\tan ^{-1}\left[K_{r} /\left(1-K_{i}\right)\right]+\tan ^{-1}\left[K_{r} /\left(1+K_{i}\right)\right]\right\}
\end{gathered}
$$

If there are no inelastic channels: $(\rho=0), \delta=\delta_{e}, \eta=1$ and $S=S_{e}=\exp \left(2 i \delta_{e}\right)$.

Complex separable kernel

$$
\begin{gathered}
V_{r} \rightarrow V=V_{r}+i V_{i} \\
V_{l^{\prime} l}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\sum_{m, n=1}^{N}\left[\underline{\lambda_{m n}^{r}(s)}+i \lambda_{m n}^{i}(s)\right] \underline{g_{i}^{\left[l^{\prime}\right]}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g_{j}^{[l]}\left(p_{0},|\mathbf{p}|\right)}
\end{gathered}
$$

underlined part \equiv MY N kernels,

$$
\lambda_{m n}^{i}(s)=\theta\left(s-s_{t h}\right)\left(1-\frac{s_{t h}}{s}\right) \bar{\lambda}_{m n}^{i}
$$

$s_{t h}$ - the inelasticity threshold.

Fifth Stage. Dibaryons

3P0

Таблица 1: Dibaryons in all considered partial-wave states

$T_{\mathrm{Lab}}(\mathrm{GeV})$	$M^{*}(\mathrm{GeV})$	$\Gamma^{*}(\mathrm{GeV})$	State
$0.856(\mathrm{GeV})$	2.26	0.200	${ }^{3} P_{2}$
$0.872(\mathrm{GeV})$	2.27	0.199	${ }^{3} P_{0}$
$0.874(\mathrm{GeV})$	2.27	0.206	${ }^{3} F_{2}$
$1.161(\mathrm{GeV})$	2.39	0.245	${ }^{1} D_{2}$
$1.505(\mathrm{GeV})$	2.52	0.639	${ }^{3} F_{3}$
$1.555(\mathrm{GeV})$	2.54	0.238	${ }^{1} D_{2}$
$1.595(\mathrm{GeV})$	2.55	1.335	${ }^{3} P_{0}$
$1.760(\mathrm{GeV})$	2.61	2.264	${ }^{3} F_{2}$
$2.100(\mathrm{GeV})$	2.73	0.118	${ }^{3} F_{2}$
$2.700(\mathrm{GeV})$	2.93	0.374	${ }^{3} F_{3}$

Sixth Stage. Deuteron.

Deuteron "Wave function"

Deuteron "Wave function"

Seventh Stage. Deep Inelastic Scattering

Evolution of Nucleon Structure in Nuclei

* Let us consider Deep Inelastic Scattering (DIS) leptons from nuclei:

$$
l+A \rightarrow l^{\prime}+X
$$

* Cross section can be written as:

$$
d \bar{\sigma} \propto \frac{\alpha^{2}}{q^{4}} L^{\mu \nu}\left(k, k^{\prime}\right) W_{\mu \nu}(P, p)
$$

* Lepton tensor has form:

$$
L^{\mu v}\left(k, k^{\prime}\right)=\frac{1}{2} \sum_{s s^{\prime}} \bar{u}^{s^{\prime}}\left(k^{\prime}\right) \gamma_{\mu} u^{s}(k) \bar{u}^{s}(k) \gamma_{\mu} u^{s^{\prime}}\left(k^{\prime}\right)
$$

* Hadron tensor we write as:

$$
W_{\mu \nu}(P, p)=\frac{1}{2} \sum_{n}\langle P| j_{\mu}^{+}|n\rangle\langle n| j_{v}|P\rangle(2 \pi)^{4} \delta^{4}\left(P+q-p_{n}\right)
$$

Structure functions in DIS

\% Hadron tensor can be related to amplitude for forward Compton scattering T-matrix by means of the unitary relation:

$$
W_{\mu \nu}(P, q)=\frac{1}{2 \pi} \operatorname{Im} T_{\mu \nu}(P, q)
$$

* Using Gauge invariance condition:

$$
q_{\mu} W_{\mu \nu}(P, q)=0,
$$

we can write ($v=q_{0}$ is the photon energy):
$W_{\mu \nu}(P, q)=W_{1}\left(v, q^{2}\right)\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right)+\frac{W_{2}\left(v, q^{2}\right)}{M^{2}}\left(P_{\mu}-\frac{P \bullet q}{q^{2}} q_{\mu}\right)\left(P_{v}-\frac{P \bullet q}{q^{2}} q_{\nu}\right)$

* In Bjorken limit

$$
\begin{aligned}
& -q^{2}=Q^{2} \rightarrow \infty, v \rightarrow \infty, \\
& M W_{1}\left(v, q^{2}\right) \rightarrow F_{1}(x), \\
& v W_{2}\left(v, q^{2}\right) \rightarrow F_{2}(x), \\
& x=-\frac{q^{2}}{2 M v}
\end{aligned}
$$

* we can write the hadron tensor in following form:
$W_{\mu \nu}(P, q)=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{v}}{q^{2}}\right) F_{1}(x)+\frac{1}{P \bullet q}\left(P_{\mu}-\frac{P \bullet q}{q^{2}} q_{\mu}\right)\left(P_{v}-\frac{P \bullet q}{q^{2}} q_{v}\right) F_{2}(x)$
* Here $F_{1}(x), F_{2}(x)$ are scale invariant structure functions (SF).

Basic Approximations

* There are three basic groups of models for explanation of the EMC effect by taking into account:
- Nucleon separation energy, relativistic fermi-motion, NN correlations
- Non-nucleon degrees of freedom;
- The quark confinement radius changes.
* Basic Approximations:
- The one boson approximation in the bound state equation;
- Treatment of the DIS amplitude as an incoherent sum of amplitudes on individual constituents;
- Representation of the hadron tensor of the bound nucleon in the same form as for free nucleon

Nuclear Compton Amplitude

* Nuclear Compton amplitude can be written as:

$$
T_{\mu \nu}^{A}(P, q)=i \int d^{4} x e^{i q x}\langle A, P| T\left\{j_{\mu}(x) j_{v}(0)\right\}|A, P\rangle
$$

$\langle A, P| T\left\{j_{\mu}(x) j_{\nu}(0)\right\}|A, P\rangle=\int d Z d Z^{\prime} \bar{\chi}_{\alpha, P}^{A}(Z) \bar{G}_{2(n+1) \mu \nu}\left(Z, x, Z^{\prime}\right) \bar{\chi}_{\alpha, P}^{A}\left(Z^{\prime}\right)$,
where $Z=z_{1} \ldots z_{n} ; d Z=d z_{1}, \ldots d z_{n}$, relative time is:

$$
\tau_{i}=\frac{1}{n} \sum_{j=1}^{n} z_{j 0}-z_{i 0}
$$

* Bethe-Salpeter vertex function is:

$$
\bar{\chi}_{\alpha, p}^{A}(\xi)=\int d Z d Z_{(n)}(\xi, Z) \bar{G}_{2 n}\left(Z, Z^{\prime}\right) \overline{\widetilde{\alpha}}_{\alpha, p}^{A}\left(Z^{\prime}\right) .
$$

* The kernel of the integral BS equation is:

$$
\bar{G}_{2 n}\left(Z, Z^{\prime}\right)=S_{(n)}^{-1}\left(Z, Z^{\prime}\right)-G_{2 n}^{-1}\left(Z, Z^{\prime}\right)
$$

* The kernel is the anzats of the theory:
- One bozon exchange kernel:

$$
\bar{G}_{2 n}\left(Z, Z^{\prime}\right)=\sum_{i, j} \sum_{m} \Gamma_{m}^{(1)}\left(z_{i}\right) \otimes \Gamma_{m}^{(1)}\left(z_{j}\right) \Delta\left(z_{i}, z_{j}\right) ;
$$

- Separable form of the kernel:

$$
\bar{G}_{2 n}\left(Z, Z^{\prime}\right)=\sum_{i, j} \lambda_{i j} g_{i}(Z) g_{j}\left(Z^{\prime}\right)
$$

- BS vertex in the momentum space is:

$$
S_{(n)}(P, K) \Gamma_{\alpha}^{A}(P, K)=\int d x_{1}^{4} \ldots d x_{n}^{4} e^{-i \sum_{j=1}^{n} k_{j} x_{j}} \chi_{\alpha, P}\left(x_{1} \ldots x_{n}\right) .
$$

The BS Amplitude of Compton scattering for deuteron

Structure functions of deuteron

* Using Mandelstam technique and neglecting terms of order $1 / Q^{2}$ and $\left(M_{D}-2 E\right)^{2}$ we arrive to expression for structure function of deuteron:

$$
\begin{aligned}
F_{2}^{D}\left(x_{D}\right) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{m^{2}}{4 E^{3}\left(M_{D}-2 E\right)^{2}}\left\{F_{2}^{N}\left(x_{N}\right)\left(\frac{E-k_{3}}{M_{D}}+\frac{M_{D}-2 E}{2 M_{D}}\right) \Phi^{2}\left(M_{D}, k\right)-\right. \\
& -\frac{M_{D}-2 E}{M_{D}} x_{N} \frac{d F_{2}^{N}\left(x_{N}\right)}{d x_{N}} \Phi^{2}\left(M_{D}, k\right)+ \\
& \left.+F_{2}^{N}\left(x_{N}\right) \frac{E-k_{3}}{M_{D}}\left(M_{D}-2 E\right) \frac{\partial}{\partial k_{0}} \Phi^{2}\left(M_{D}, k\right)\right\}_{k_{0}=E-M_{D / 2}} .
\end{aligned}
$$

Data for the ratio of iron and deuterium structure functions are from the EMC [Aubert J.J. e.al. PL, 123B, 275(1983)] (\square) and from the SLAC [Arnold R.G. at al., PRL, 52,727(1984)] (•) experiments. Theory [Akulinichev et al. Preprint INR P-0382(1984)]: the values $V=-50 \mathrm{Mev}$, $P_{F}=270 \mathrm{Mev} / \mathrm{c}$ have been used in numerical calculations

Ratio of SF's in BS approach

The ratio $F_{2}^{4} \mathrm{He}(x) / F_{2}^{\mathrm{D}}(x)$. The data are from NMC (1995) (blue circles) and SLAC (1994) (red circles).

The ratio $F_{2}^{4} \mathrm{He}(x) / F_{2}^{\mathrm{D}}(x)$ with corrected $F_{2}^{\mathrm{N}}(x)$.

Eighth Stage. Structure Functions.

Introduction

Extraction of the neutron structure functions from deuteron data:

1. Theoretical models
2. Naive assumption: $2 F_{2}{ }^{\mathrm{D}}=F_{2}{ }^{\mathrm{p}}+F_{2}{ }^{\mathrm{n}}$
3. Extrapolation of the EMC effect from heavy nuclei to $\boldsymbol{A}=2$

Most dangerous is option (3) : one can approximately esimate the amplitude of modification, but never the form of \boldsymbol{x} dependence

We suggest an approach to extraction of $F_{2}{ }^{n}(x)$ from the data collected in deep inelastic scattering experiments, which relies on relativistic theoretical description of $F_{2}{ }^{\mathrm{D}}(\boldsymbol{x})$ and well defined assumptions on the high x asymptotics for the ratio $F_{2}{ }^{\mathrm{n}}(x) / F_{2}{ }^{\mathrm{p}}(x)$.

It is based on the covariant Bethe-Salpeter formalism and allows to express the hadronic part of the nuclear deep inelastic amplitude $W^{\boldsymbol{A}}$ in terms of the off-mass-shell nucleon and antinucleon amplitudes.

Hadronic Tensor (bound states)

The space-time distribution of nucleons inside a nucleus:

$$
\begin{equation*}
\phi\left(x_{1}, \ldots x_{n}\right)=\langle 0| T \psi\left(x_{1}\right) \ldots \psi\left(x_{n}\right)|A\rangle, \tag{1}
\end{equation*}
$$

The distribution depends on the relative time!

$$
\tau_{i, j}=x_{0 j}-x_{0 i}
$$

$$
\begin{gather*}
W_{\mu \nu}^{A}\left(P_{A}, q\right)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{W_{\mu \nu}^{N}(p, q) f^{N / A}(P, p)}{\left(p^{2}-m^{2}\right)^{2}\left((P-p)^{2}-M_{A-1}^{2}\right)} \tag{2}\\
W_{\mu \nu}^{A}\left(P_{A}, q\right)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d p_{0}}{(2 \pi)} \frac{W_{\mu \nu}^{N}(p, q) f^{N / A}(P, p)}{\left(p^{2}-m^{2}\right)^{2}\left((P-p)^{2}-M_{A-1}^{2}\right)} \tag{3}
\end{gather*}
$$

The covariant Bethe-Salpeter formalism provides the integral equation relating $F_{2}{ }^{\mathrm{P}},{F_{2}}^{\mathrm{n}}$ and $F_{2}{ }^{\mathrm{D}}$.

It is solved iteratively by using input structure functions

$$
F_{2}{ }^{\mathrm{D}} \text { and } F_{2}{ }^{\mathrm{D}}
$$

Additionally, this allows extrapolation of $F_{2}{ }^{\mathrm{D}}$ into a wide range of x and Q^{2}

Deuteron structure function

The integral equation:

$$
\begin{gather*}
F_{2}^{D}\left(x_{D}\right)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{m^{2}}{4 E^{3}\left(M_{D}-2 E\right)^{2}}\left\{F_{2}^{N}\left(x_{N}\right)\left(\frac{E-k_{3}}{M_{D}}+\frac{M_{\mathrm{D}}-2 E}{2 M_{\mathrm{D}}}\right) \Phi^{2}\left(M_{D}, k\right)-\right. \\
\left.\frac{M_{D}-2 E}{M_{D}} x_{N} \frac{d F_{2}^{N}\left(x_{N}\right)}{d x_{N}} \Phi^{2}\left(M_{D}, k\right)\right\}, \tag{4}
\end{gather*}
$$

where $F_{2}^{N}\left(x_{N}\right)=F_{2}^{p}\left(x_{N}\right)+F_{2}^{n}\left(x_{N}\right)$.

Second term results from the Fermi motion along time axis

EMC-effect cannot be explained without changing the nucleon structure in a nucleus -
$4 D$ - radius of a bound nucleon changes

SMC fit for \boldsymbol{F}_{2}^{p} and its modification

$$
F_{2}^{\mathrm{p}}\left(x, Q^{2}\right)=x^{\lambda_{1}}(1-x)^{\lambda_{2}} \sum_{n=1.5} C_{n}(1-x)^{n-1}\left(\frac{\ln \left(\frac{Q^{2}}{\Lambda}\right)}{\ln \left(\frac{Q_{⿱}^{2}}{\Lambda}\right)}\right)^{B(x)}\left(1+\frac{\sum_{n=1.4} \kappa_{n} x^{n}}{Q^{2}}\right) \text { (A.1) }
$$

where

$$
B(x)=\rho_{1}+\rho_{2} x+\frac{\rho_{3}}{\rho_{4}+x} .
$$

The parametrization is restricted to the kinematic region $3.5 \cdot 10^{-5}<x<0.85$.

i	λ_{i}	ρ_{i}	κ_{i}	C_{i}
1	-0.2499713175097	0.1141083888210	-1.451744104784	0.2289630236346
2	2.396344728724	-2.235597858569	8.474547402342	0.08498360257578
3	-	0.03115195484229	-34.37914208393	3.860797992943
4	-	0.02135222381130	45.88805973036	-7.414275585348
5	-	-	-	3.434223579597

Table 1: Values of the parameters for F_{2}^{p} given in Eq. (A.1).
Modification suggested by BMST $(x \rightarrow 1): \lambda_{2} \rightarrow \lambda_{2}+\left(3-\lambda_{2}\right) \boldsymbol{x}^{15}$

Assumptions

- $\lim _{x \rightarrow 0} \frac{F_{2}^{n}(x)}{F_{2}^{p}(x)}=1$
- $\lim _{x \rightarrow 1} F_{2}^{p}(x)=$ Const $\cdot(1-x)^{3}$

No elastic limit $\quad \rightarrow \quad F_{2}^{p}(1)=0$.

- $\lim _{x \rightarrow 1} \frac{F_{2}^{n}(x)}{F_{2}^{p}(x)}=C$

Three different models for the u / d ratio at $x=1$:

1) $S U(6)$ symmetry: $C=2 / 3$,
2) Elastic limit: $C=\left(\frac{\mu_{n}}{\mu_{p}}\right)^{2} \simeq 0.47$,
3) Scalar diquark dominance: $C=1 / 4$.

- $\lim _{x \rightarrow 1} \frac{d}{d x}\left(\frac{F_{2}^{n}(x)}{F_{2}^{p}(x)}\right)=0$

Main assumption: $\boldsymbol{F}_{2}{ }^{\mathrm{P}}(\boldsymbol{x})$ is known in the range $3.510^{-5}<\boldsymbol{x}<0.85$

Deuteron structure function compared with data from SLAC and NMC experiments (low \boldsymbol{x} region)

$F_{2}{ }^{\mathrm{D}}(x)$ approximated with Eq. (4) in the range $10^{-3}<x<0.6$ with constraints listed in «Assumptions»

Deuteron structure function compared with data from SLAC and NMC experiments (high \boldsymbol{x} region)

$F_{2}{ }^{\mathrm{D}}(x)$ approximated with Eq. (4) in the range $10^{-3}<x<0.6$ with constraints listed in «Assumptions»

Results representing ratios of structure functions versus Bjorken \boldsymbol{x}

Squares and triangles - results of NMC and SLAC, respectively.

Squares and triangles - results of NMC and SLAC, respectively, obtained in naive approach.

Comparison with the naive approximation for the $F_{2}{ }^{n}(x)$ evaluation

The ratio is virtually 1.0 below $\boldsymbol{x}=0.7$ due to cancellation of contributions from 3D Fermi motion and the Fermi motion along time axis

Ratio of the neutron and proton structure functions

$$
\begin{equation*}
R^{\mathrm{n} / \mathrm{p}}(x)=(1-x)+a_{2} x^{\alpha_{2}}+\frac{\alpha_{2} a_{2}-1}{1+c_{1}} x^{\beta_{1}}(1-x)\left(1+c_{1} x^{\gamma_{1}}\right) \tag{A.2}
\end{equation*}
$$

	$a_{2}=2 / 3$	$a_{2}=0.47$	$a_{2}=1 / 4$
α_{2}	3.13971	2.2262	1.15416
β_{1}	2.2129	1.61188	0.88126
c_{1}	-1.01176	-1.00692	0.86217
γ_{1}	0.01901	0.08483	5.65744

Three values of $\mathbf{a}_{\mathbf{2}}$ correspond to three different assumptions on

$$
F_{2}{ }^{n}(x) / F_{2} p(x) \text { at } x=1
$$

Conclusions

Theoretically justified and fully consistent procedure for extracting $F_{2}{ }^{n}(x)$ in the kinematic range $10^{-3}<x<1$ under three different assumptions on $F_{2}{ }^{\mathrm{n}}(x) / F_{2}{ }^{\mathrm{p}}(x)$ at $x=1$ is proposed.

Increase in experimental accuracy in measurements of $F_{2}{ }^{\mathrm{p}}(x)$ and $F_{2}{ }^{\mathrm{D}}(\boldsymbol{x})$ in the range $0.6<x<0.8$ by factor of two will be sufficient for verification of models suggested for the evaluation of the d / u ratio at $x=1$.

Procedure relies on a good approximation of $F_{2}{ }^{\mathrm{D}}(x)$ which is not sensitive to different high \boldsymbol{x} limits of the neutron structure function.

This also means that $F_{2}{ }^{\mathrm{D}}(x)$ measured by already completed DIS experiments ($\boldsymbol{x}<0.9$) can be described without introducing nonbaryonic degrees of freedom. The interval which remains unmeasured can in principle accommodate dibaryon states or some other exotica.

Summary

* BS approach:
- is full covariant descriptions of two body system;
- allows to describe the properties of deuteron with separable potential!
- can give very reasonable explanation structure functions, form factors and tensor polarization of deuteron in elastic $e D$-scattering;
- gives in one iteration approximation pair mesonic currents
- gives foundations of light cone dynamics approaches;
- gives good instrument to study polarization phenomena in elastic, inelastic, deep-inelastic lepton deuteron scattering;

Summary

* BS approach:
- allows by the model-independently the SF of light nuclei to be calculated in terms of SF of nuclear fragments and threedimensional momentum distribution;
- gives the good explanation of the behavior for SF's ratios of the light nuclei to the SF of the free nucleon;
- indicates that the modification of the nucleon structure of lightest nuclei is a manifestation of unsynchronous behavior of bound nucleon;
- gives new understanding fundamental properties of nucleon, mainly its time deformation in relativistic bound system.

