DETERMINATION OF HEAVY METAL SPALLATION REACTIONS CROSS SECTIONS AT 2, 2.94, 3.5 GEV DEUTERON BEAMS

 <u>V.Bukhal¹</u>, K.Husak¹, I.Zhuk ¹, A.Patapenka¹, A. Safronava¹, V.Voronko², V.Sotnikov², M. Artiushenko²,
 A.Baldin³, M.Paraipan³, S.Tyutyunnikov³, I. Kudashkin³, A.Berlev³ S.R.Hashemi-Nezhad⁴

¹Joint Institute for Power and Nuclear Research – Sosny, NAS Belarus,

²National Science Center "Kharkov Institute of Physics and Technology", NAS Ukraine, Kharkov

³Joint Institute for Nuclear Research, Dubna, Russia

⁴School of Physics, University of Sydney, Australia

OUTLINE

- Motivation
- Experiment description
- Solid State Nuclear Track Detectors technique (SSNTD) for cross section determination
- Uncertainties calculation
- Experimental results
- Comparison with another author's results

Motivation

- Deuteron experimental data on nuclear reaction cross section with the energy of bombarding particles above 500 MeV are still very limited (see EXFOR library)
- Target and constructional materials (could be made of such material as beryllium, tantalum, tungsten, uranium, plutonium or thorium) is important criteria for ADS
- Lack of nuclear date makes difficult to perform some model calculations of ADS assemblies

Experiment description

Experiment description

Used material dimensions:

- Diameter of all foils 6.5 mm
- Thickness:
- Al 1 mm
- Mica 0.030 mm
- ²³⁸U 0.030 mm
- ²³²Th 0.060 0.080 mm
- ²⁰⁹Bi 0.025 mm
- ²⁰⁷Pb 0.5 mm
- ¹⁹⁷Au 0.030 mm
- ¹⁸¹Ta 0.030 0.050 mm

Experiment description

- "Telescope" setup was irradiated by deuterons beams extracted from Nuclotron accelerator, Joint Institute for Nuclear Research
- Energy: 2 , 2.94, 3.5 GeV/nucleon
- Date: February 2014

SSNTD technique is based on relation of tracks density and flux density of investigated neutron field

Track detector with fission foil (source of fission fragment) is irradiated in neutron field. After this the tracks are formed on the track detector surface

$$N_{q}^{i} = A^{i} \mu^{i} \varepsilon_{q} d_{q} \rho_{q} P_{0}^{\infty} \sigma_{f}^{i}(E) \varphi^{P}(E) dE$$

Sensor calibration factor :

$$k_{q}^{sens} = A^{i} \mu^{i} \varepsilon_{q} d_{q} \rho_{q}$$

Sensor
Sensor

The technique was developed by I. Zhuk and A. Malikhin was applied in fission reactions rate measurements in reactor systems

 μ - is a fraction of charged fragments reached the detector and depends on foil ^μ thicknesses

$$=\begin{cases} \frac{1}{2} \left(1 - \frac{d_q}{2\overline{R_0}} \right) & \text{for } d_q < \overline{R_0} \\ \frac{1}{4} \frac{1}{\overline{R_0}} & \text{for } d_q = \overline{R_0} \\ \frac{1}{4} \frac{\overline{R_0}}{\overline{d_q}} & \text{for } d_q > \overline{R_0} \end{cases}$$

- *d* is a thickness of foil
- R is the range of fission fragments

Calibration factor is a unique characteristic for specific pair "fissionable foil - detector"

Calibration factor does not depend on the field of exposure

Depend on fissionable foil

depend on fission processes

Calibration factor calculation

For Monte Carlo calculation SCILAB program code was used and:

• Consist of three modules:

- module of sensor geometry (geometry of SSNTD and fissionable foil);

- module of fission fragment parameters (kinematic characteristic: momentum and fission fragment distribution, here average fission fragment's range in the detector and foil is calculated ;

- calculated module (here the spatial distribution of fission fragments after penetrating of fission foil and detector, parameter of ion trajectory in detector are calculated).

Patapenka A.S. (2011).Neutron –physical characteristics of the subcritical setup with natural uranium blanket, driven by accelerator. PhD Thesis, JINPR-Sosny NAS Belarus

Calibration factor calculation

For determination of dependence of calibration factor on fission fragments mass distribution and kinetic energy the FKUKA code was used.

(*Intra nuclear cascade INK* model *nucleon-nucleon interaction model RQMD-2.4*.) General scheme of calculation is presented below

Calibration factor used in the cross section calculation

Нуклид	w, calibration factor, track \times cm-2 \times deuteron-1	w, calibration factor, track × barn-1 × deuteron-1
Ta-181	7,90E+18	7,90E-06
Au-197	1,03E+19	1,03E-05
Pb-207	1,05E+19	1,05E-05
Bi-209	9,20E+18	9,20E-06
Th-232	9,70E+18	9,70E-06
U-nat	9,50E+18	9,50E-06

Calibration factors for determination of relativistic particle induced fission rates in ^{nat}U, ²³⁵U, ²³²Th, ^{nat}Pb and ¹⁹⁷Au foils

S.R. Hashemi-Nezhad^{a,*}, Igor Zhuk^b, A. Potapenko^b, M. Kievets^b, M.I. Krivopustov^{c,1}

^a Institute of Nuclear Science, School of Physics, University of Sydney, NSW 2006, Australia

^b Joint Institute of Power and Nuclear Research-Sosny NASB, 220109 Minsk, Belarus

^c Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation

Hashemi-Nezhad S.R., Zhuk I., Potapenko A.S., Krivopustov M.I. Calibration of track detectors for fission rate determination: an experimental and theoretical study // Nucl. Instr. and Meth. - 2006. - Vol. A568. -P. 816 - 825.

Patapenka A.S. (2011). Neutron – physical characteristics of the subcritical setup with natural uranium blanket, driven by accelerator. PhD Thesis, JINPR-Sosny NAS Belarus XXII International Baldin Seminar, 15-20 September 2014

In terms of SSNTD the cross section can be found as:

$$\boldsymbol{\sigma}_{f}^{i} = N_{q}^{i} / (k_{q}^{sens} P)$$

$$N_q^{'}$$
 - is a track densities, [track/cm²]

P

- k_q^{sens} calibration factor for the sensor, [track·cm⁻²·deutron]
 - is the number of primaries, [deuteron]

Data used for spallation-reaction cross section determination Deuteron 2 GeV/nucleon (February 2014)

Nuclide	Track density BACK, track/cm ²	Track density FACE, track/cm ²	BACK/ FACE	Average track density, track/cm ²	Deuteron flux, d/cm ²
¹⁸¹ Ta	1,25E+05	6,86E+04	1,83±0,08	9,68E+04	
¹⁹⁷ Au	1,49E+05	9,23E+04	1,61±0,07	1,21E+05	4.045.40
²⁰⁷ Pb	1,74E+05	1,07E+05	1,63±0,07	1,41E+05	4,91E+10
²⁰⁹ Bi	2,26E+05	1,42E+05	1,59±0,07	1,84E+05	
²³² Th	5,97E+05	4,80E+05	1,24±0,05	5,39E+05	
natU	7,68E+05	6,23E+05	1,23±0,05	6,96E+05	

Deuteron 2.94 GeV/nucleon (February 2014)

Nuclide	Track density BACK, track/cm ²	Track density FACE, track/cm ²	BACK/ FACE	Average track density, track/cm ²	Deuteron flux, d/cm ²
¹⁸¹ Ta	1,18E+5	6,21E+4	1,90±0,08	9,01E+04	
¹⁹⁷ Au	1,49E+5	8,39E+4	1,78±0,08	1,16E+05	
²⁰⁷ Pb	1,76E+5	1,05E+5	1,68±0,07	1,41E+05	5,0E+10
²⁰⁹ Bi	2,20E+5	1,43E+5	1,54±0,07	1,82E+05	
²³² Th	5,38E+5	4,18E+5	1,29±0,06	4,78E+05	
natU	6,67E+5	5,46E+5	1,22±0,05	6,07E+05	

Data used for spallation-reaction cross section determination Deuteron 3.5 GeV/nucleon (February 2014), irradiation time – 16 hours

Nuclide	Track density BACK, track/cm ²	Track density FACE, track/cm ²	BACK/ FACE	Average track density, track/cm ²	Deuteron flux, d/cm ²
¹⁸¹ Ta	0,983E+6	0,515E+6	1,91±0,08	7,49E+05	
¹⁹⁷ Au	1,21E+6	0,722E+6	1,68±0,07	9,66E+05	
²⁰⁷ Pb	1,41E+6	0,894E+6	1,58±0,07	1,15E+06	3,8E+11
²⁰⁹ Bi	1,68E+6	1,087E+6	1,55±0,07	1,38E+06	
²³² Th	≥3E+6	≥3E+6	-	-	
^{nat}U	≥3E+6	≥3E+6	-	-	

Deuteron 3.5 GeV/nucleon (February 2014), irradiation time – 2.5 hours

Nuclide	Track density BACK, track/cm ²	Track density FACE, track/cm ²	BACK/ FACE	Average track density, track/cm ²	Deuteron flux, d/cm ²
¹⁸¹ Ta	2,16E+5	1,12E+5	1,93±0,08	1,64E+05	
¹⁹⁷ Au	2,72E+5	1,73E+5	1,57±0,07	2,23E+05	0.05.40
²⁰⁷ Pb	3,11E+5	1,94E+5	1,60±0,07	2,53E+05	9,3E+10
²⁰⁹ Bi	3,78E+5	2,63E+5	1,44±0,06	3,21E+05	
²³² Th	1,05E+6	0,84E+6	1,25±0,05	9,45E+05	
^{nat}U	1,20E+6	1,00E+6	1,20±0,05	1,10E+06	

Uncertainties estimation

Heavy metal spallation-reaction cross section:

$$\sigma_{f=}(N/P \times K_{sen}) \times k_f \times k_{ss} \times k_n \times k_{impur}$$

N – average track density of fission fragments in the center of foil

P - average deuteron density fallen on the full detector's surface

 K_{sen} – calculated calibration factor

 K_f – correction for average track density on the full detector surface

 K_{ss} – correction for projectiles self-shielding

 K_n – correction for fission non-connected with the deuterons (high energy neutrons

as the result of projectiles with the surrounding things interaction)

 K_{impur} – correction for impurity atoms in the fissionable foils

Correction for average track density on the full detector surface

Correction for average track density on the full detector surface

Input value K_f

(Correction for average track density on the full detector surface)

- Type of uncertainty B
- Type of distribution rectangular
- Interval of possible values ± 7.5 %
- Relative standard uncertainty 4.3 %

According to the result of measurement of deuteron flux density in the area of samples location , density is approximated by linear function with the error of 1.3 % along the Y axis and 7.4% along the X axis. The maximal error of correction for transition of track density from the detector's center to the full surface is 7,5%.

Relative standard uncertainty is equal to $7.5\%/\sqrt{3} = 4.3\%$

Uncertainty budget

Value X _i	Estimation <i>x_i</i>	Relative standard uncertainty u(X _i), % /percentage contribution	Type of uncer- tainty	Type of probability distribution
<i>N,</i> average track density in the center of foil	0,97·10 ⁵ track/cm ²	3,6 / 14,2	A	normal
<i>P</i> , average deuteron flux density	4,91·10 ¹⁰ d/cm ²	12,7 / 50,2	В	rectangular
<i>K_{sen}</i> , calculated calibration factor	0,98·10 ⁻⁵ track/d∙barn	2,9 / 11,4	В	rectangular
<i>K_f</i> , correction for average track density on the full detector surface	1,00	4,3 / 17,0	В	rectangular
<i>K_{ss}</i> – correction for projectiles self-shielding	1,00	0,6 / 2,4	В	rectangular
K_n – correction for fission non-connected with the d	1,00	0,6 / 2,4	В	rectangular
K_{impur} – correction for impurity atoms	1,00	0,6 / 2,4	В	rectangular

Relative standard uncertainty calculation

$$\underline{u}(\sigma_{f}) = \sqrt{3, 6^{2} + 12, 7^{2} + 2, 9^{2} + 4, 3^{2} + 3 * 0, 6^{2}} = 14 \%$$

Relative extended uncertainty calculation It is suppose that the probability coverage is equal to P = 95 %.

$$\underline{U}(\boldsymbol{\sigma}_{f}) = k \cdot u(\boldsymbol{\sigma}_{f}) = 2 \cdot 14 = 28 \%$$

Extended uncertainty :

$$U(\sigma_f) = 1,13.28/100 = 0,32$$
 barn

The uncertainty is estimate in accordance with ISO/IEC 17025:1999, ISO/IEC 17025:2001

Experimental results of heavy metal spallation-reaction cross sections measured with the help of SSNTD

Nuclide	Cross section, mbarn 2 GeV/nucleon	Cross section, mbarn 2,94 GeV/nucleon	Cross section, mbarn 3,5 GeV/nucleon
¹⁸¹ Ta	250 ± 70	228 ± 64	222 ± 62
¹⁹⁷ Au	239 ± 67	226 ± 63	231 ± 65
²⁰⁷ Pb	273 ± 76	267 ± 75	258 ± 72
²⁰⁹ Bi	407 ± 114	394 ± 110	373 ± 104
²³² Th	1131 ± 317	985 ± 276	1044 ± 292
natU	1492 ± 418	1276 ± 357	1240 ± 347

Experimental results

Dependence of cross section on atomic number

XXII International Baldin Seminar, 15-20 September 2014

<u>Comparison of results</u>

	Nuclide				Cross se	ction, barn		
		1,6 GeV	2,5	GeV	4 GeV	4 GeV	5,88 GeV	7 GeV
	¹⁸¹ Ta					250±70	228±64	222±62
	¹⁹⁷ Au				92±23	239±67	226±63	231±65
	²⁰⁷ Pb	200±50*			173±40*	273±76	267±75	258±72
	²⁰⁹ Bi	320±50*			306±40*	407±114	394±110	373±104
					206±46			
	²³² Th	1277±216	1232	2±207	1153±198	1131±317	985±276	1044±292
	natU				1453±350	1492±418	1276±357	1240±347
V.V.Sotnikov et al. "Experimental determination of the natPb(d,f),				High-ene	e rgy fission cross secti M. Zamani, ¹ Aristotle Universi ² Joint Insti (Received 15 March 20	PHYSICAL REVIEW C 87, 06 ons induced by deuteror S. Stoulos, ^{1,} M. Fragopoulou ty of Thessaloniki, School of Physi itute for Nuclear Research (JINR), 13; revised manuscript received 19	7602 (2013) ns on ²³²Th and protons o 1, ¹ and M. Krivopustov ² <i>ics, Thessaloniki 54 124, Greece</i> <i>Dubna 141980, Russia</i> 9 April 2013; published 5 June 201	on ^{nat} Pb targets
nuclear reactions cross section at 1.6 GeV and 4 GeV deuteron beams; Int. Conf.Cur.Prob.in.Nucl.Phys.Atom .Ene. Kyiv,2010			m	S. Sto	Nuclear fission oulos, ¹ W. Westmeier, ² R ¹ Aristotle University of T ² Institute fur K ³ Institute of Nucle ⁴ Institute of Nucle (Received 22 July 2011; re	PHYSICAL REVIEW C 85 on cross sections induc a. Hashemi-Nezhad, ³ M. Fra hessaloniki, Nuclear and Elem cernchemie, Philipps-Universite ar Science, School of Physics, clear Physics, N.C.S.R. "Demo vised manuscript received 23 S	5, 024612 (2012) ced by deuterons of 4 (agopoulou, ¹ A. Lagoyannis, ⁴ <i>entary Particle Physics Departn</i> <i>at, DE-35032 Marburg, German</i> <i>A28, University of Sydney, Aust</i> <i>kritos," GR-15310, Athens, Grea</i> <i>ieptember</i> 2011; published 21 F	GeV and M. Zamani ^{1,*} ment, Greece ty ralia ecce ebruary 2012)

Conclusions

- Spallation reaction cross sections of heavy metal ¹⁸¹Ta, ¹⁹⁷Au, ²⁰⁷Pb, ²⁰⁹Bi, ²³²Th, ²³⁸U at energy 2, 2.94, 3 GeV/nucleon deuterons beam have determined
- Heavy metal spallation-reactions cross section strongly dependent on atomic number
- Cross sections changed slightly in the investigated range on energy
- There is absolutely new data which need to be added in the Experimental Nuclear Reaction Database (EXFOR)

Acknowledgments

We would like to thank

Veksler and Baldin Laboratory of High Energies (VBLHE), Joint Institute for Nuclear Research (JINR), Dubna, Russia and staff of the Nuclotron accelerator for providing us with the research facilities used in these experiments and personally the projects leaders <u>S. Tyutyunnikov and A. Baldin</u>

for the possibility to take part in the experiments

JINR for the hospitality during stay in Dubna

National academy of science of Belarus and leaders of JIPNR-Sosny for supporting this work

Thank you for your attention!

o.bukhal @gmail.com