Factorization theorem and hard semi-inclusive processes with transverse polarizations

I.V. Anikin (JINR, Dubna)

in collaboration with O.V. Teryaev

ISHEPP, Dubna 2014
Dedicated to A.V. Efremov on occasion on his 80th anniversary
17. September 2014

Factorization theorem, in a nutshell

Factorization theorem states that the short (hard) and long (soft) distance dynamics can be separated out provided large Q^{2}, i.e.

$$
T_{\mu \nu}=\int d^{4} k \operatorname{tr}\left[E_{\mu \nu}(k) \Phi(k)\right] \stackrel{Q^{2} \rightarrow \infty}{\Longrightarrow} \int d x \operatorname{tr}\left[E_{\mu \nu}(x) \Phi(x)\right]+\mathcal{O}\left(1 / Q^{2}\right)
$$

where $E_{\mu \nu}$ implies the product of propagators, while

$$
\begin{aligned}
& \Phi(k)=-\int d^{4} z e^{i(k-\Delta / 2) \cdot z}\left\langle p^{\prime}\right| \psi(z) \bar{\psi}(0)|p\rangle \\
& \Phi(x)=\int d^{4} k \delta(x-k \cdot n) \Phi(k)
\end{aligned}
$$

Schematically, this corresponds to

or, an alternative expression reads
Amplitude $=\{$ Hard part $(p Q C D)\} \otimes\{$ Soft part (npQCD) $\}$,
where both hard and soft parts are independent of each other, UV- and IR-renormalizable and, finally, parton distributions must possess the universality property.

Drell-Yan process

We study
$N^{(\uparrow \downarrow)}\left(p_{1}\right)+N\left(p_{2}\right) \rightarrow \gamma^{*}(q)+X\left(P_{X}\right) \rightarrow \ell\left(l_{1}\right)+\bar{\ell}\left(l_{2}\right)+X\left(P_{X}\right)$, where $I_{1}+I_{2}=q$ has a large mass squared $\left(q^{2}=Q^{2}\right)$.

The cross-sections reads (kinematics: $p_{1} \sim n^{*+}, p_{2} \sim n^{-}$)

$$
d \sigma=(d P . S .)^{2} \mathcal{L}_{\mu \nu} \mathcal{W}_{\mu \nu}^{G /},
$$

where $\mathcal{L}_{\mu \nu}$ is a lepton tensor, and $\mathcal{W}_{\mu \nu}^{G I}$ - the QED gauge invariant hadron tensor.

a)

b)

Single Spin Asymmetry

Any SSA are defined as

$$
\mathrm{SSA} \sim d \sigma^{(\uparrow)}-d \sigma^{(\downarrow)} \sim \mathcal{L}_{\mu \nu} H_{\mu \nu}
$$

In our case, we deal with the unpolarized leptons, i.e. $\mathcal{L}_{\mu \nu} \in \Re e$. Therefore, the hadron tensor $H_{\mu \nu}$ should also be real one, i.e. $H_{\mu \nu} \in \Re \mathrm{e}$, provided, at the same time, one of hadrons is transversely polarized. Usually, it is possible if

$$
\begin{aligned}
& H_{\mu \nu}^{(a)} \sim \Im m[\operatorname{Hard}] \otimes\left\{\left\langle p_{1}, S_{T}\right| \mathcal{O}(\bar{\psi}, \psi, A)\left|S_{T}, p_{1}\right\rangle \stackrel{\mathcal{F}}{\sim} i \varepsilon_{\alpha \beta S_{T} p_{1}} \Phi\right\}, \\
& H_{\mu \nu}^{(b)} \sim \operatorname{Hard} \otimes\left\{\left\langle p_{1}, S_{T}\right| \mathcal{O}(\bar{\psi}, \psi, A)\left|S_{T}, p_{1}\right\rangle \stackrel{\mathcal{F}}{\sim} i \varepsilon_{\alpha \beta S_{T} p_{1}} \Im m[\Phi]\right\} .
\end{aligned}
$$

However, for the pure real B^{V}-function $\in \Re$ e, which parametrizes

$$
\begin{aligned}
& \left\langle p_{1}, S^{T}\right| \bar{\psi}\left(\lambda_{1} \tilde{n}\right) \gamma_{\beta} g A_{\alpha}^{T}\left(\lambda_{2} \tilde{n}\right) \psi(0)\left|S^{T}, p_{1}\right\rangle= \\
& i \varepsilon_{\beta \alpha S^{T} p_{1}} \int d x_{1} d x_{2} e^{i x_{1} \lambda_{1}+i\left(x_{2}-x_{1}\right) \lambda_{2}} B^{V}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

the diagram (b) does NOT contribute to the SSA.
As a result, we are faced to a problem with QED gauge invariance and, therefore, with the factorization breaking.

The inference on B^{V}-function $\in \Re$ e is based on the solution of the differential equation (within the gauge: $A^{+}=0$)

$$
\partial^{+} A_{T}^{\alpha}=G_{T}^{+\alpha},
$$

one can get that

$$
\begin{aligned}
A^{\mu}(z) & =\int_{-\infty}^{\infty} d \omega^{-} \theta\left(z^{-}-\omega^{-}\right) G^{+\mu}\left(\omega^{-}\right)+A^{\mu}(-\infty) \\
& =-\int_{-\infty}^{\infty} d \omega^{-} \theta\left(\omega^{-}-z^{-}\right) G^{+\mu}\left(\omega^{-}\right)+A^{\mu}(\infty)
\end{aligned}
$$

Inserting the above-mentioned presentations into the corresponding m.e., we thus obtain that

$$
\Phi_{A}^{\alpha}\left(x_{1}, x_{2}\right)=\delta\left(x_{1}-x_{2}\right) \Phi_{A(-\infty)}^{\alpha}\left(x_{1}\right)+\frac{(-i) \Phi_{G}^{\alpha}\left(x_{1}, x_{2}\right)}{x_{2}-x_{1}-i \epsilon}
$$

and

$$
\Phi_{A}^{\alpha}\left(x_{1}, x_{2}\right)=\delta\left(x_{1}-x_{2}\right) \Phi_{A(+\infty)}^{\alpha}\left(x_{1}\right)+\frac{(-i) \Phi_{G}^{\alpha}\left(x_{1}, x_{2}\right)}{x_{2}-x_{1}+i \epsilon}
$$

Calculation the plus and minus combinations leads to

$$
\begin{aligned}
& \Phi_{A}^{\alpha}\left(x_{1}, x_{2}\right)=\frac{1}{2} \Phi_{A}^{\alpha}\left(x_{1}, x_{2}\right)+\frac{1}{2} \Phi_{A}^{\alpha}\left(x_{1}, x_{2}\right)= \\
& \frac{1}{2} \delta\left(x_{1}-x_{2}\right)\left\{\Phi_{A(-\infty)}^{\alpha}\left(x_{1}\right)+\Phi_{A(+\infty)}^{\alpha}\left(x_{1}\right)\right\}+ \\
& \frac{\mathcal{P}}{x_{2}-x_{1}}(-i) \Phi_{G}^{\alpha}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& 0=\Phi_{A}^{\alpha}\left(x_{1}, x_{2}\right)-\Phi_{A}^{\alpha}\left(x_{1}, x_{2}\right)= \\
& \delta\left(x_{1}-x_{2}\right)\left\{\Phi_{A(+\infty)}^{\alpha}\left(x_{1}\right)-\Phi_{A(-\infty)}^{\alpha}\left(x_{1}\right)\right\}- \\
& 2 i \pi \delta\left(x_{1}-x_{2}\right)(-i) \Phi_{G}^{\alpha}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

So, this ambiguity ultimately gives us the standard-used representation:

$$
\begin{aligned}
& B^{V}\left(x_{1}, x_{2}\right)=\frac{\mathcal{P}}{x_{1}-x_{2}} T\left(x_{1}, x_{2}\right), \\
& T\left(x_{1}, x_{2}\right) \stackrel{\mathcal{F}}{\sim}\left\langle\bar{\psi} \gamma_{\beta} \tilde{n}_{\nu} G_{\nu \alpha} \psi\right\rangle \quad T(x, x) \neq 0 .
\end{aligned}
$$

provided the asymmetric boundary condition for gluons:

$$
B_{A(\infty)}^{V}(x)=-B_{A(-\infty)}^{V}(x)
$$

Thus, for the considered $D Y$, a pure real $B^{V}\left(x_{1}, x_{2}\right)$ will lead to the problem with QED gauge invariance which means factorization breaking.

Way of solution

I.V.A., O.V.Teryaev PLB690 (2010) 519

Actually, the B^{V}-function is not the real one. Indeed, the sign of $i \epsilon$ in the propagator of the h. p. \Longrightarrow θ-function in the gluon field repres. \Longrightarrow the contour gauge for gluons which demands

$$
g(x) \equiv\left[x, x_{0}\right]=\operatorname{Pexp}\left\{i g \int_{\mathbb{P}\left(x_{0}, x\right)} d \omega \cdot A(\omega)\right\}=1\left(\forall x \in \mathbb{R}^{4}\right)
$$

where the final point at the minus infinity changes the fixed "startingpoint x_{0}, whereas the point z changes the point x.

For an arbitrary path connecting z and $-\infty$, one has

$$
\begin{aligned}
A_{\mu}^{\mathrm{ax}}(z) & =[z,-\infty]^{-1} A_{\mu}(z)[z,-\infty]+\frac{i}{g}[z,-\infty]^{-1} \partial_{\mu}[z,-\infty] \\
& =\int_{-\infty}^{z} d \omega_{\alpha} \frac{\partial \omega_{\beta}}{\partial z_{\mu}} G_{\alpha \beta}(\omega)+A_{\mu}(-\infty)
\end{aligned}
$$

Choosing now the path in the form of the straight line:

$$
\left.\omega_{\alpha}(v)\right|_{z} ^{-\infty}=z_{\alpha}-\left.\tilde{n}_{\alpha} \lim _{\epsilon \rightarrow 0} \frac{1-e^{-\epsilon v}}{\epsilon}\right|_{0} ^{\infty}
$$

we arrive at

$$
A^{\mu}(z)=\int_{-\infty}^{\infty} d \omega^{-} \theta\left(z^{-}-\omega^{-}\right) G^{+\mu}\left(\omega^{-}\right)+A^{\mu}(-\infty)
$$

Roughly speaking, the hard and soft parts are NOT fully independent:

Causal Prescrip. Hard Part $\stackrel{\text { C. g. }}{\Longleftrightarrow}$ Pole Prescrip. Soft Part

Despite of this, factorization still works owing to the universal property of B-function.

All these fix (due to the T-reversal inv-ce, $B_{A(-\infty)}^{V}(x)=0$)

$$
B^{V}\left(x_{1}, x_{2}\right)=\frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}+\dot{\epsilon}_{\epsilon}}+\delta\left(x_{1}-x_{2}\right) B_{A(-\infty)}^{V}\left(x_{1}\right),
$$

which leads to the non-zero contribution from the diagram (b).

Conclusions for DY:
ISI $\Rightarrow \frac{1}{\ell^{+}-i \epsilon} \Rightarrow\left[z^{-},-\infty^{-}\right] \Rightarrow$ b.c. $A_{\mu}(-\infty) \Rightarrow \frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}+i \epsilon} \Rightarrow \mathbf{G I}$

Direct Photon Production in hadron collisions

We now dwell on the direct photon production in two hadron collisions:

$$
N^{(\uparrow \downarrow)}\left(p_{1}\right)+N\left(p_{2}\right) \rightarrow \gamma(q)+X\left(P_{X}\right)
$$

where $q^{2}=Q^{2}$ is relatively large. The cross-section $d \sigma$ is defined by the hadron tensor as

QCD gauge invariance

To study the QCD gauge invariance, we consider the following diagrams:

The quark-gluon correlator reads

$$
\begin{aligned}
\Phi_{\rho}^{\perp}\left(k_{1}, \ell\right) & =-\int\left(d^{4} \eta_{1} d^{4} z\right) e^{-i k_{1} \eta_{1}-i \ell z}\left\langle p_{1}\right| \bar{\psi}(0) \gamma^{+} \psi\left(\eta_{1}\right) A_{\rho}^{\perp}(z)\left|p_{1}\right\rangle \\
& =-\varepsilon_{\rho}^{\perp} \int\left(d^{4} \eta_{1}\right) e^{-i k_{1} \eta_{1}}\left\langle p_{1}\right| \bar{\psi}(0) \gamma^{+} \psi\left(\eta_{1}\right) a^{+}(\ell)\left|p_{1}\right\rangle
\end{aligned}
$$

Factorization procedure gives us

$$
\begin{aligned}
& \Phi_{\rho}^{\perp}\left(x_{1}, x_{2}\right)=\int\left(d^{4} k_{1} d^{4} \ell\right) \delta\left(x_{1}-k_{1} n\right) \delta\left(x_{21}-\ell n\right) \Phi_{\rho}^{\perp}\left(k_{1}, \ell\right)= \\
& -\varepsilon_{\rho}^{\perp} \int\left(d \lambda_{1}\right) e^{-i x_{1} \lambda_{1}}\left\langle p_{1}\right| \bar{\psi}(0) \gamma^{+} \psi\left(\lambda_{1} n\right) \int\left(d^{4} \ell\right) \delta\left(x_{21}-\ell n\right) a^{+}(\ell)\left|p_{1}\right\rangle
\end{aligned}
$$

- For checking of the QCD gauge invariance, we make a replacement: $\hat{\varepsilon}^{\perp} \Rightarrow \hat{\ell}_{L}$ in the diagrams.

Initial and Final states interactions

In the process we consider, we have both ISI and FSI:

$$
\begin{aligned}
& \text { ISI } \Rightarrow \frac{1}{\ell^{+}-i \epsilon} \Rightarrow\left[z^{-},-\infty^{-}\right] \Rightarrow \text { b.c. } A_{\mu}(-\infty) \Rightarrow \frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}+i \epsilon} \\
& \text { FSI } \Rightarrow \frac{1}{\ell^{+}+i \epsilon} \Rightarrow\left[+\infty^{-}, z^{-}\right] \Rightarrow \text { b.c. } A_{\mu}(+\infty) \Rightarrow \frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}-i \epsilon}
\end{aligned}
$$

QCD gauge invariance: final stage

$$
\begin{aligned}
& \overline{W^{(1)}} \sim \mathbf{C}_{2} \frac{1}{x_{1}} \int d x_{2} \frac{x_{2}-x_{1}}{x_{2}} \frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}-i \epsilon}, \\
& \overline{W^{(2)}} \sim \mathbf{C}_{2} \frac{1}{x_{1}} \int d x_{2} \frac{1}{x_{2}} \frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}-i \epsilon}, \\
& \overline{W^{(3)}} \sim \mathbf{C}_{1} \frac{1}{x_{1}^{2}} \int d x_{2} \frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}+i \epsilon}, \\
& \overline{W^{(4)}} \sim \mathbf{C}_{3} \frac{1}{x_{1}^{2}} \int d x_{2} \frac{T\left(x_{1}, x_{2}\right)}{x_{1}-x_{2}+i \epsilon},
\end{aligned}
$$

where \mathbf{C}_{i} are corresponding colour factors. After calculation of imaginary parts, we get

$$
+\mathbf{C}_{2}-\mathbf{C}_{1}-\mathbf{C}_{3}=-\left[t^{a}, t^{b}\right] t^{b} t^{a}-i f^{a b c} t^{c} t^{a} t^{b}=0
$$

Conclusions and Discussions

- Drell-Yan process: (i) It is mandatory to include a contribution of the extra diagram which naively does not have an imaginary part; (ii) This additional contribution emanates from the complex gluonic pole prescription in the representation of the twist 3 correlator $B^{V}\left(x_{1}, x_{2}\right)$ which, in its turn, is directly related to the complex pole prescription in the quark propagator forming the hard part of the corresponding hadron tensor; (iii)The causal prescription in the quark propagator, involved in the hard part of the diagram on Fig.(a), selects from the physical axial gauges the contour gauge.
- Direct Photon Production: In contact to DY, this process includes both ISI and FSI that leads to the different gluonic pole prescriptions in the diagrams under our consideration; (ii) In turn, the different gluonic pole prescriptions ensure the QCD gauge invariance.
- We observed the universality breaking, which spoils the standard factorization. However, the factorization procedure we proposed can still be applied for calculations.

