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Factorization theorem, in a nutshell

Factorization theorem states that the short (hard) and long
(soft) distance dynamics can be separated out provided large
Q2, i.e.

Tµν =

∫
d4k tr

[
Eµν(k)Φ(k)

] Q2→∞
=⇒

∫
dx tr

[
Eµν(x)Φ(x)

]
+O(1/Q2)

where Eµν implies the product of propagators, while

Φ(k) = −
∫

d4z ei(k−∆/2)·z⟨p′|ψ(z) ψ̄(0)|p⟩ ,

Φ(x) =
∫

d4k δ(x − k · n)Φ(k) .

I.V. Anikin Factorization theorem



Schematically, this corresponds to

or, an alternative expression reads

Amplitude = {Hard part (pQCD)} ⊗ {Soft part (npQCD)} ,

where both hard and soft parts are independent of each other,
UV- and IR-renormalizable and, finally, parton distributions
must possess the universality property.
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Drell-Yan process

We study

N(↑↓)(p1) + N(p2) → γ∗(q) + X (PX ) → ℓ(l1) + ℓ̄(l2) + X (PX ),

where l1 + l2 = q has a large mass squared (q2 = Q2).
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The cross-sections reads (kinematics: p1 ∼ n∗+, p2 ∼ n−)

dσ = (dP.S.)2 LµνWGI
µν ,

where Lµν is a lepton tensor, and WGI
µν – the QED gauge

invariant hadron tensor.
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Single Spin Asymmetry

Any SSA are defined as

SSA ∼ dσ(↑) − dσ(↓) ∼ Lµν Hµν .

In our case, we deal with the unpolarized leptons, i.e. Lµν ∈ ℜe.
Therefore, the hadron tensor Hµν should also be real one, i.e.
Hµν ∈ ℜe, provided, at the same time, one of hadrons is
transversely polarized. Usually, it is possible if

H(a)
µν ∼ ℑm [Hard]⊗

{
⟨p1,ST |O(ψ̄, ψ,A)|ST ,p1⟩

F∼ iεαβST p1Φ

}
,

H(b)
µν ∼ Hard ⊗

{
⟨p1,ST |O(ψ̄, ψ,A)|ST ,p1⟩

F∼ iεαβST p1ℑm [Φ]

}
.
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However, for the pure real BV -function ∈ ℜe, which
parametrizes

1x  - x 

11
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p p

x

⟨p1,ST |ψ̄(λ1ñ) γβ gAT
α(λ2ñ)ψ(0)|ST ,p1⟩ =

iεβαST p1

∫
dx1dx2 eix1λ1+i(x2−x1)λ2 BV (x1, x2) ,

the diagram (b) does NOT contribute to the SSA.

As a result, we are faced to a problem with QED gauge
invariance and, therefore, with the factorization breaking.

I.V. Anikin Factorization theorem



The inference on BV -function ∈ ℜe is based on the solution of
the differential equation (within the gauge: A+ = 0)

∂+ Aα
T = G+α

T ,

one can get that

Aµ(z) =

∞∫
−∞

dω−θ(z− − ω−)G+µ(ω−) + Aµ(−∞)

= −
∞∫

−∞

dω−θ(ω− − z−)G+µ(ω−) + Aµ(∞) .
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Inserting the above-mentioned presentations into the
corresponding m.e., we thus obtain that

Φα
A(x1, x2) = δ(x1 − x2)Φ

α
A(−∞)(x1) +

(−i) Φα
G(x1, x2)

x2 − x1−iϵ
,

and

Φα
A(x1, x2) = δ(x1 − x2)Φ

α
A(+∞)(x1) +

(−i) Φα
G(x1, x2)

x2 − x1+iϵ
.
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Calculation the plus and minus combinations leads to

Φα
A(x1, x2) =

1
2
Φα

A(x1, x2) +
1
2
Φα

A(x1, x2) =

1
2
δ(x1 − x2)

{
Φα

A(−∞)(x1) + Φα
A(+∞)(x1)

}
+

P
x2 − x1

(−i)Φα
G(x1, x2)

and

0 = Φα
A(x1, x2)− Φα

A(x1, x2) =

δ(x1 − x2)
{
Φα

A(+∞)(x1)− Φα
A(−∞)(x1)

}
−

2i π δ(x1 − x2)(−i)Φα
G(x1, x2) .
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Mulders, Boer et al. ’94-96; Barone et al. ’00; Boer, Qiu ’02

So, this ambiguity ultimately gives us the standard-used
representation:

BV (x1, x2) =
P

x1 − x2
T (x1, x2) ,

T (x1, x2)
F∼ ⟨ψ̄ γβ ñνGνα ψ⟩ T (x , x) ̸= 0 .

provided the asymmetric boundary condition for gluons:

BV
A(∞)(x) = −BV

A(−∞)(x)

Thus, for the considered DY, a pure real BV (x1, x2) will lead to
the problem with QED gauge invariance which means
factorization breaking.
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Way of solution

I.V.A., O.V.Teryaev PLB690 (2010) 519

Actually, the BV -function is not the real one. Indeed,

the sign of iϵ in the propagator of the h. p. =⇒
θ-function in the gluon field repres. =⇒
the contour gauge for gluons which demands

g(x) ≡ [x , x0] = Pexp
{

ig
∫

P(x0,x)
dω · A(ω)

}
= 1 (∀x ∈ R4),

where the final point at the minus infinity changes the fixed
“startingpoint x0, whereas the point z changes the point x .
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For an arbitrary path connecting z and −∞, one has

Aax
µ (z) = [z,−∞]−1 Aµ(z) [z,−∞] +

i
g
[z,−∞]−1∂µ[z,−∞]

=

z∫
−∞

dωα
∂ωβ

∂zµ
Gαβ(ω) + Aµ(−∞) .

Choosing now the path in the form of the straight line:

ωα(v)
∣∣∣∣−∞

z
= zα − ñα lim

ϵ→0

1 − e−ϵv

ϵ

∣∣∣∣∞
0
,

we arrive at

Aµ(z) =

∞∫
−∞

dω−θ(z− − ω−)G+µ(ω−) + Aµ(−∞) .
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Roughly speaking, the hard and soft parts are NOT fully
independent:

Causal Prescrip. Hard Part
C. g.⇐⇒ Pole Prescrip. Soft Part

Despite of this, factorization still works owing to the universal
property of B-function.

I.V. Anikin Factorization theorem



All these fix (due to the T -reversal inv-ce, BV
A(−∞)(x) = 0)

BV (x1, x2) =
T (x1, x2)

x1 − x2+iϵ
+ δ(x1 − x2)BV

A(−∞)(x1) ,

which leads to the non-zero contribution from the diagram (b).

Conclusions for DY:

ISI ⇒ 1
ℓ+ − iϵ

⇒ [z−,−∞−] ⇒ b.c. Aµ(−∞) ⇒ T (x1, x2)

x1 − x2+iϵ
⇒ GI
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Direct Photon Production in hadron collisions

We now dwell on the direct photon production in two hadron
collisions:

N(↑↓)(p1) + N(p2) → γ(q) + X (PX ) .

where q2 = Q2 is relatively large. The cross-section dσ is
defined by the hadron tensor as

p2 p2

p1p1
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QCD gauge invariance

To study the QCD gauge invariance, we consider the following
diagrams:

p1 p1

p2p2

p1 p1

p2p2

p2 p2

p1p1 p1 p1

p2p2
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The quark-gluon correlator reads

Φ⊥
ρ (k1, ℓ) = −

∫
(d4η1 d4z)e−ik1η1−iℓz⟨p1|ψ̄(0)γ+ψ(η1)A⊥

ρ (z)|p1⟩

= −ε⊥ρ
∫

(d4η1)e−ik1η1⟨p1|ψ̄(0)γ+ψ(η1)a+(ℓ)|p1⟩ .

Factorization procedure gives us

Φ⊥
ρ (x1, x2) =

∫
(d4k1 d4ℓ)δ(x1 − k1n)δ(x21 − ℓn)Φ⊥

ρ (k1, ℓ) =

−ε⊥ρ
∫

(dλ1)e−ix1λ1⟨p1|ψ̄(0)γ+ψ(λ1n)
∫

(d4ℓ)δ(x21 − ℓn)a+(ℓ)|p1⟩ .

• For checking of the QCD gauge invariance, we make a
replacement: ε̂⊥ ⇒ ℓ̂L in the diagrams.
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Initial and Final states interactions

In the process we consider, we have both ISI and FSI:

ISI ⇒ 1
ℓ+ − iϵ

⇒ [z−,−∞−] ⇒ b.c. Aµ(−∞) ⇒ T (x1, x2)

x1 − x2+iϵ

FSI ⇒ 1
ℓ+ + iϵ

⇒ [+∞−, z−] ⇒ b.c. Aµ(+∞) ⇒ T (x1, x2)

x1 − x2−iϵ
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QCD gauge invariance: final stage

W (1) ∼ C2
1
x1

∫
dx2

x2 − x1

x2

T (x1, x2)

x1 − x2−iϵ
,

W (2) ∼ C2
1
x1

∫
dx2

1
x2

T (x1, x2)

x1 − x2−iϵ
,

W (3) ∼ C1
1
x2

1

∫
dx2

T (x1, x2)

x1 − x2+iϵ
,

W (4) ∼ C3
1
x2

1

∫
dx2

T (x1, x2)

x1 − x2+iϵ
,

where Ci are corresponding colour factors. After calculation of
imaginary parts, we get

+C2−C1−C3 = −[ta, tb] tb ta − if abc tc ta tb = 0
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Conclusions and Discussions

I Drell-Yan process: (i) It is mandatory to include a
contribution of the extra diagram which naively does not
have an imaginary part; (ii) This additional contribution
emanates from the complex gluonic pole prescription in the
representation of the twist 3 correlator BV (x1, x2) which, in
its turn, is directly related to the complex pole prescription
in the quark propagator forming the hard part of the
corresponding hadron tensor; (iii)The causal prescription in
the quark propagator, involved in the hard part of the
diagram on Fig.(a), selects from the physical axial gauges
the contour gauge.
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I Direct Photon Production: In contact to DY, this process
includes both ISI and FSI that leads to the different gluonic
pole prescriptions in the diagrams under our consideration;
(ii) In turn, the different gluonic pole prescriptions ensure
the QCD gauge invariance.

I We observed the universality breaking, which spoils the
standard factorization. However, the factorization
procedure we proposed can still be applied for calculations.
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