

JOINT INSTITUTE FOR NUCLEAR RESEARCH

XXII INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS

RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS

Dubna, Russia, September 15-20, 2014

Long-range rapidity correlations between the transverse momentum and the multiplicities in light-nuclei collisions

Evgeny Andronov, Vladimir Vechernin

evgeny.andronov1@gmail.com

SPbSU, Department of High Energy and Elementary Particles Physics, Laboratory of Ultra-High Energy Physics

Dubna, 17/09/14

Outline

- Introduction
- Model with two types of strings
- Results for the n-n and pT-n correlation parameters
- Summary

Two definitions of the correlation parameter for two observables B and F

1) Linear regression

2) Correlator formula

$$\langle B \rangle_F = a + b \cdot F$$

$$b = \frac{\langle B \cdot F \rangle - \langle B \rangle \cdot \langle F \rangle}{\langle F^2 \rangle - \langle F \rangle^2}$$

Two definitions of the correlation parameter for two observables B and F

1) Linear regression

$$\langle B \rangle_F = a + b \cdot F$$

2) Correlator formula $b = \frac{\langle B \cdot F \rangle - \langle B \rangle \cdot \langle F \rangle}{\langle F^2 \rangle - \langle F \rangle^2}$

Observable types

n – charged particles multiplicity

 $p_t = \frac{1}{n} \sum_{i=1}^n p_t^{(i)}$ - event mean value of transverse momentum

Observable types

n – charged particles multiplicity

 $p_t = \frac{1}{n} \sum_{i=1}^n p_t^{(i)}$ - event mean value of transverse momentum

- n-n
- pT-n
- pT-pT

• Evgeny Andronov

Observable types

n – charged particles multiplicity

 $p_t = \frac{1}{n} \sum_{i=1}^n p_t^{(i)}$ - event mean value of transverse momentum

- n-n
- pT-n
- pT-pT

• Evgeny Andronov

Mechanism of particle production in the model

with independent strings

A.Capella, U.P.Sukhatme, C.I.Tan and J.Tran Thanh Van, Phys. Lett. B81 (1979) 68; Phys. Rep. **236** (1994) 225. A.B.Kaidalov, Phys. Lett., 116B(1982)459

Single string case

$$\underbrace{\langle n_B \rangle = \sum_B B \cdot P(B) = \langle n_B \rangle_{one} \qquad \langle n_F \rangle = \sum_F F \cdot P(F) = \langle n_F \rangle_{one} \qquad (P(F,B) = P(B) \cdot P(F))$$
In case of sufficiently large gap between windows one string produces particles in both windows independently!

$$\langle n_B n_F \rangle = \sum_{F,B} F \cdot B \cdot P(F,B) = \langle n_B \rangle \cdot \langle n_F \rangle \longrightarrow b_{n-n} = 0$$

Single string case

$$\langle n_{B} \rangle = \sum_{B} B \cdot P(B) = \langle n_{B} \rangle_{one} \qquad \langle n_{F} \rangle = \sum_{F} F \cdot P(F) = \langle n_{F} \rangle_{one}$$
In case of sufficiently large gap between windows one string produces particles in both windows independently!

$$\langle n_B n_F \rangle = \sum_{F,B} F \cdot B \cdot P(F,B) = \langle n_B \rangle \cdot \langle n_F \rangle \longrightarrow b_{n-n} = 0$$

Experiment: $b = 0.002 \pm 0.006$ Phys.Rev.D vol.34, num.11(1986)

Evgeny Andronov

Transverse momentum

 $\langle p_t \rangle_{\rm org}$

 $\langle p_t^2 \rangle_{nam} = \sqrt{N_{str}} \langle p_t^2 \rangle_{one}$

M.A.Braun and C.Pajares, Phys. Rev. Lett. **85** (2000) 4864; M.A.Braun and C.Pajares, Phys. Lett. **B287** (1992) 154; Nucl. Phys. **B390** (1993) 542, 549; N.S.Amelin, M.A.Braun and C.Pajares, Phys. Lett. **B306** (1993) 312; M.A.Braun, C.Pajares and V.V.Vechernin, Internal Note/FMD ALICE---INT---2001---16

Long-range correlations. General remarks.

- LRC are governed by the fluctuations in number of strings and by the string fusion effects
- n-n correlation coefficient is zero without these fluctuations and fusion effects
- pT-n correlation coefficient is zero without fusion effects.

Also at the seminar: 1) 16/09/14 talk by V.Vechernin 2) 16/09/14 talk by D. Neverov 3) 17/09/14 talk by G. Feofilov 4) 17/09/14 talk by V. Kovalenko

Model with two types of strings

N primary strings (N – even)

$$P_N(N_2) = C_{N/2}^{N_2} r^{N_2} (1-r)^{N/2-N_2}$$

 N_2 ; $N_1 = N - 2N_2$

E. A., V. Vechernin, PoS(QFTHEP2013), 054 (2014).

Only MC simulations

Evgeny Andronov

Long-range n-n correlation parameter. Monte-Carlo simulations.

Long-range n-n correlation parameter. Monte-Carlo simulations.

Long-range n-n correlation parameter. Connection with experiment.

By varying the width and the position of the centrality class one can scan our plot in two directions and search for the predicted effects

Long-range pT-n correlation parameter. Monte-Carlo simulations.

Long-range pT-n correlation parameter. Monte-Carlo simulations.

Absence of correlations without fusion effects!

Long-range pT-n correlation parameter. Monte-Carlo simulations.

NA49 Pb+Pb 158 AGeV PtN correlation coefficient

Summary

- Development of the model with 2 types of strings. Predictions for the n-n and pT-n correlation parameters with Monte-Carlo simulations.
- The calculation results predict the non-monotonic behavior of the correlation parameters with the growth of the mean number of primary strings, i.e. with the increase of the collision centrality.
- Taking into account that fusion parameter depends on the number of primary emitters in the event enables to describe transition from the negative values of the pT-n correlation parameters to the positive ones.

Thank you for your attention!

Experimental studies on LRC

p+(anti-)p, 900 GeV (1988) Linear regression

Pb+Pb, 158 AGeV/c (2005)

Negative pT-n correlations

[2] G. Feofilov et al. (NA49 Collaboration), Proc. of Baldin ISHEPP XVII, Volume I, 222 (2005)

Evgeny Andronov

Two-stage scenario of particles production. I stage: strings creation.

p-p, low energies

[1]A.Capella, U.P.Sukhatme, C.I.Tan and J.Tran Thanh Van, Phys. Lett. B81 (1979) 68; Phys. Rep. 236 (1994) 225.
Evge[2]A.BuKaidalov, Phys. Lett., 116B(1982)459

[1]A.Capella, U.P.Sukhatme, C.I.Tan and J.Tran Thanh Van, Phys. Lett. B81 (1979) 68; Phys. Rep. 236 (1994) 225.
Evge[2]A.BuKaidalov, Phys. Lett., 116B(1982)459

Fused

$$N_2$$

 $\overline{\mu_{F2}} = \overline{\mu_{B2}} = \sqrt{2}\overline{\mu}$
 $D_{\mu F2} = D_{\mu B2} = \sqrt{2}D_{\mu}$
 $\langle p_{tB2} \rangle_{1-string} = \overline{k_2} = 2^{1/4}\overline{k}$

E.Andronov, V.Vechernin PoS(QFTHEP 2013)054

Evgeny Andronov

$$b_{n-n} = \frac{D_{N_1}\overline{\mu} + 2D_{N_2}\overline{\mu} + 2\sqrt{2}\operatorname{cov}(N_1, N_2)}{\overline{N_1}\omega[\mu] + \overline{N_2}\omega[\mu] + D_{N_1}\overline{\mu} + 2D_{N_2}\overline{\mu} + 2\sqrt{2}\operatorname{cov}(N_1, N_2)}$$

$$\int \text{Transition to one-type case}$$

$$b_{n-n} = \frac{D_N\overline{\mu}}{\overline{N}\omega[\mu] + D_N\overline{\mu}}$$

$$\langle p_{tB} \rangle = \overline{k} \sum_{B^{(1)}, B^{(2)}} \frac{B^{(1)} + 2^{1/4} B^{(2)}}{B^{(1)} + B^{(2)}} \sum_{N_1, N_2} \omega(N_1, N_2) P_{N_1}(B^{(1)}) P_{N_2}(B^{(2)})$$

$$\left\langle p_{tB}n_{F}\right\rangle = \overline{\mu k} \sum_{B^{(1)}, B^{(2)}} \frac{B^{(1)} + 2^{1/4}B^{(2)}}{B^{(1)} + B^{(2)}} \sum_{N_{1}, N_{2}} (N_{1} + \sqrt{2}N_{2})\omega(N_{1}, N_{2})P_{N_{1}}(B^{(1)})P_{N_{2}}(B^{(2)})$$

N primary strings in all events

$$b_{n-n} = \frac{\overline{\mu} * N * r(N) * (1 - r(N)) * (3 - 2\sqrt{2})}{D_{\mu} * N * (1 - r(N)) + \sqrt{2}/2} r(N) + \overline{\mu} * N * r(N) * (1 - r(N)) * (3 - 2\sqrt{2})}$$

Comparison of the n-n correlation coefficients

without fluctuations in the number of primary

strings.

Comparison of the pT-n correlation coefficients.

$$\langle p_{TB} \rangle = \sum_{B^{(1)}, B^{(2)}} \frac{\overline{k_1} B^{(1)} + \overline{k_2} B^{(2)}}{B^{(1)} + B^{(2)}} \sum_{N_1, N_2} q(N_1, N_2) P_{N_1}(B^{(1)}) P_{N_2}(B^{(2)});$$

$$\langle p_{TB} n_F \rangle = \sum_{B^{(1)}, B^{(2)}} \frac{\overline{k_1} B^{(1)} + \overline{k_2} B^{(2)}}{B^{(1)} + B^{(2)}} \sum_{N_1, N_2} q \left(N_1, N_2 \right) \left(N_1 \overline{\mu}_{F^{(1)}} + N_2 \overline{\mu}_{F^{(2)}} \right) P_{N_1} \left(B^{(1)} \right) P_{N_2} \left(B^{(2)} \right)$$

Approximation: $B^{(1)} + B^{(2)} \approx N_1 \overline{\mu}_{B1} + N_2 \overline{\mu}_{B2}$

Without approximation

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

Shift=100

MC

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

Shift=100

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

Shift=100

37

38

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

MC

Shift=100

39

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

Shift=100

MC

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

Shift=100

41

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

Shift=100

RED - slope=0.05 $\mu = D_{\mu} = 0.5$ MC BLUE - slope=0.5 BLACK - slope=5 Monte-Carlo generator Fluctuating number of strings N, w[N]=2 Shift=100 пит b_{n-n} $\overline{num} + \langle n_F \rangle$ Numerator of b_{nn} < nF >mum Ę 70 RED - slope=0.05 BLUE - slope=0.5 60 BLACK - slope=5 60 50 50 40 40 30 30 20 20 10 10 0 50 100 150 200 472 150 100 200 Evgeny Andronov

N

 $\mu = D_{\mu} = 0.5$

Monte-Carlo generator

 $\mu = D_{\mu} = 0.5$

Monte-Carlo generator

Shift=100

Nonfluctuating number of strings N

 $\mu = D_{\mu} = 0.5$

Monte-Carlo generator

Fluctuating number of strings N, w[N]=2

Shift=100

 $\mu = D_{\mu} = 0.5$

Monte-Carlo generator

Shift=100

Fluctuating number of strings N, w[N]=2

