Deuterons beam parameters measurements of the Nuclotron using SSNTD

I. Zhuk ¹, V. Voronko ², S. Tyutyunnikov ³, V. Sotnikov ², A. Safronava ¹, A. Patapenka ¹, M. Kadykov ³, M. Artyushenko², K. Husak ¹, V Chilap ⁴, A. Chinenov ⁴

Participants:

- ¹ Joint Institute of Power and Nuclear Research-Sosny Minsk, Republic of Belarus
- ² National Scientific Center Kharkov
 Institute of Physics and Technology
 Kharkov Republic of Ukraine
- ³ Joint Institute for Nuclear Research, Dubna, Russian Federation
- ⁴ CPTP "Atomenergomash", Moscow, Russian Federation

Experiments objectives

∞Check the setup alignment along the beam axis. [®] Precise determination of the beam position on the target. ∞Beam parameters determination: beam size (FWHD), beam shape. Deuteron beam flux

measurement.

Experimental assembly "QUINTA"

Scheme of sensor's disposition

Track detectors after etching. March 2012.

Track density, track/cm²

19.09.2012

Deuterons beam parameters. December 2011.

Deuteron's energy, GeV	Beam centre coordinates, [cm]		FWHM of distributions, [cm]	
	Xc	Yc	FWHM _X	FWHM _Y
1	1.3±0.2	0.2±0.1	2.6±0.3	3.5±0.3
4	1.4±0.0	0.2±0.0	1.5±0.0	1.4±0.0
8	-0.5±0.0	0.0±0.0	0.6±0.1	1.2±0.1

Deuterons beam parameters. March 2012.

Deuteron's	Beam centre coordinates, [cm]		FWHM of distributions, [cm]	
energy, GeV	Xc	Yc	FWHM _X	FWHM _Y
1	0.6±0.0	0.9±0.0	2.9±0.1	3.2±0.1
4	2.0±0.0	0.8±0.0	1.1±0.1	1.2±0.1
8	1.2±0.0	0.1±0.0	0.9±0.1	1.2±0.0

Track density distribution approximated by Gaussian function (2D- and 3D-projection). E= 1 GeV

December 2011 $I_{tot}=1.47 \cdot 10^{13}$ (Xc,Yc)=(1.3,0.2)(FWHMx,FWHMy)=(2.6,3.5)

1000 Parts - 100 -

March 2012 $I_{tot}=1.9 \cdot 10^{13}$ (Xc,Yc)=(0.6,0.9) (FWHMx,FWHMy)=(2.9,3.2)

Track density distribution approximated by Gaussian function (2D and 3D-projection). E= 4 GeV

December 2011 $I_{tot}=1.96 \cdot 10^{13}$ (Xc,Yc)=(1.4,0.1) (FWHMx,FWHMy)=(1.5,1.4)

March 2012 $I_{tot}=2.7 \cdot 10^{13}$ (Xc,Yc)=(2.0,0.8)

(FWHMx,FWHMy)=(1.1,1.2)

Track density distribution approximated by Gaussian function (2D- and 3D-projection). E= 8 GeV

December 2011 $I_{tot}=6.3 \cdot 10^{10}$ (Xc,Yc)=(-0.5,0.0)(FWHMx,FWHMy)=(0.6,1.2)

March 2012 $I_{tot}=3.7 \cdot 10^{12}$ (Xc,Yc)=(1.2,0.1) (FWHMx,FWHMy)=(0.9,1.2)

Primary deuterons striking into the fissionable material

Uranium rods

Fissionable material (natural uranium) in th transverse plane XY

-10

Y, cm

-15

-15

X, cm

Beam 2D distribution

Integration of the Beam distribution by the area of fissionable materials gives the number of deuterons striking into the target

Primary deuterons striking into the fissionable material

Run in December 2011			Run in March 2012		
D en GeV	ergy,	Beam part striking the target, %	D energy, GeV	Beam part striking the target, %	
	1,0	81,1	1,0	81,5	
	4,0	79,7	4,0	65,1	
	8,0	99,3	8,0	84,8	

The calculations were done only for the top plane of the 2 section. The total effect can be calculated using Monte-Carlo method. THE DATA SHOWS THE PROBLEM OF CORRECT COMPARISION DIFFERENT SETS OF EXPERIMENTS !!!

Conclusions:

- ∞ The technique for precise determination of the beam position on the target was developed. Resolution of the method is 1 mm.
- Seam position on the target was determined for the experiments of the years 2011-2012, where Quinta setup has been irradiated by deuteron beams with the energies of 1, 4 and 8 GeV.
- ∞ Beam parameters (beam shape and beam size) were determined for the mentioned experiments. It is shown that the increase of beam energy leads to smaller beam size.
- № It is shown that more precise primary alignment of the target along the beam axis is needed. Or, if it is not possible, the central part of the setup (uranium rods, d=3,6 cm) should be replaced by a lead target with bigger diameter, in order to avoid beam losses in the gaps between the rods.

Thank you for your attention!