A SUMMARY OF EXPERIMENTAL **RESULTS ON THE REACTIONS IN URANIUM SAMPLES IRRADIATED** WITH A DEUTERON BEAM OF ENERGIES UP TO 8 GeV AT THE **QUINTA TARGET**

J.Adam, M.Kadykov, J.Khushvaktov, A.Solnyshkin, V.Tsoupko - Sitnikov, S.Tyutyunnikov, <u>L.Zavorka</u>+ *Joint Institute for Nuclear Research, Dubna, Russia*

V.Chilap CPTP «Atomenergomash», Moscow, Russia

P.Caloun, M.Suchopar⁺ Nuclear Physics Institute Rez, Czech Republic ⁺Czech Technical University, Prague, Czech Republic

Objectives of this presentation

- Introduce our work
- Present results of experiments in 2011-2012
 (E_d = 1, 2, 4, 6, 8 GeV)

The aims of our work

- Find products of the reactions in U samples (natural abundance, ²³⁵U)
- Determine the rates of production of these isotopes
- Assess the main type of reaction
- Comparison of experimental results and MCNPX 2.7 calculation (if done)

How can we do that

- Activation measurement technique
- Gamma spectroscopy with the use of HPGe detectors Canberra and ORTEC (20%, resp. 30% relative efficiency) Calibrated with standards made in 2011

Isotope identification

• Half-life

(at least 10 measurements)

• Energy and intensity of gamma line

• Reaction rates calculated from measured activity

Isotope identification

- More than 100 residual nuclei identified in extensive spectra
- Included corrections: decay during irradiation, cooling and measurement, dead time, detector efficiency, nonlinearity, beam instability gamma line intensity, self-absorption

Location of samples

Location of samples 6 GeV experiment

²³⁸ $U(n, \gamma)^{239}U \xrightarrow{T_{1/2} = 23.5 \text{ min}}{\beta^{-}}$ ²³⁹Np $\xrightarrow{T_{1/2} = 2.3 \text{ d}}{\beta^{-}}$ ²³⁹Pu non E_{thr} ²³⁸ $U(n, 2n)^{237}U$ $E_{thr} = 6.2 \text{ MeV}$

All energies: U samples inside

Ratio of ²³⁷U / ²³⁹Pu Production

All energies: U samples inside

²³⁹Pu Production

All energies: U samples inside

²³⁷U Production

U samples inside: fission

Number of Fission

U samples inside: fission

⁹¹Sr, ¹⁴⁰Ba Production vs. Cross. Sec.

U samples inside: thermal fission

- Estimation of the contribution of thermal neutrons to the total number of fission
- During 2012 run
 U samples in
 Cd shielding

U samples inside: Beam shift during 4 GeV run

U samples inside: just fission?

Rate of production / Cumulative fission yield

Experiment vs. calculation

 $E_{\rm max}$ $\sigma \cdot \phi dE$ R =Neutron spectra: **MCNPX 2.7 Cross section:** NJOY 99.112 (up to 20 MeV) **TALYS 1.4** (up to 200 MeV)

Over 200 MeV max. 3% of total number of neutrons

Conclusion

- Fast neutron fission: main, but not the only one type of reaction
- Sensitivity to the beam shape and position
- Precise determination of the integral beam intensity is needed
- Reaction rate (i.e. number of fission) increases with energy, but:

Conclusion

...does not increase per 1 GeV with energy

Thank you for your attention.

