Nuclear Physics Institute, Academy of Sciences of the Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

Monte Carlo Simulations of Natural Uranium Setups Irradiated With Relativistic Deuterons by Means of MCNPX Code

Martin Suchopár

XXI International Baldin Seminar on High Energy Physics Problems Relativistic Nuclear Physics and Quantum Chromodynamics JINR Dubna, Russia, September 10-15, 2012

Outline

}

Setup

Method

Results

Beam monitors

Conclusion

Energy + Transmutation & Kvinta setup description

- Method and models used in MCNPX simulations
 - Beam monitoring and input parameters
- Computation results

Energy + Transmutation Setup

Kvinta 2010 and 2011 Setup

Setup
• E+T setup

• Kvinta setup

Method

Results

Beam monitors

d

Conclusion

Kvinta 2010 setup

- 3 sections
- 4 detector plates
- Pb shielding
 - m natU = 315 kg

Kvinta 2011 setup

- 5 sections
- 6 detector plates
- no Pb shielding

m natU = 512 kg

Setup

• E+T setup

Method

Results

Conclusion

• Kvinta setup

Kvinta-M 2011 Setup

Kvinta-M 2011 Setup

Energy + Transmutation and Kvinta Irradiations

Setup		Energy + Transmutation set-up						
E+T setup Kvinta setup Irradiations	Beam energy [GeV]	Beam particles	Year	Irradiation time [h:m]	Integral beam flux [x10 ¹³]			
	0.7		2004	8:51	1.47			
lethod	1.0	protopo	2003	6:03	3.40			
Results	1.5	protons	2001	12:03	1.14			
Ream monitors	2.0		2003	7:43	1.25			
1	1.6		2006	8:00	2.45			
Conclusion	2.52	deuterons	2005	6:46	0.65			
	4.0		2009	17:48	1.99			

Energy + Transmutation and Kvinta **Irradiations**

Setup		Kvinta set-up					
 <i>E</i>+<i>T</i> setup <i>Kvinta</i> setup <i>Irradiations</i> 	Beam energy [GeV]	Beam particles	Month Year	Irradiation time [h:m]	Integral beam flux [x10 ¹³]		
	2.0			18:50	1.69		
Method	4.0	deuterons	March 2011	17:58	1.41		
Results	6.0			17:13	1.93		
Ream monitors	1.0	doutorone	Decem	14:26	1.53		
	4.0	dedterons	2011	12:24	1.93		
Conclusion	1.0			04:56	1.9		
	4.0	deuterons	March 2012	March 2012	08:52	2.7	
	8.0			09:01	0.37		

QUINTA-M setup layout at the irradiation position

Setup

- E+T setup
- Kvinta setup

3)

• Irradiations

Method

Results

Beam monitors

Conclusion

Main Objectives of the Kvinta Setup

- 1) To have another set-up for benchmark studies of neutron production and transport simulation codes (e.g. MCNPX code)
- 2) To have systematic of deuteron beams with energies above 1 GeV
 - To obtain strong source of neutrons for transmutation tests
- 4) Measurement of neutrons and delayed neutrons during low intensity beam irradiation by scintillation detectors
- 5) Measurement of neutron field during high intensity beam irradiation by threshold activation and solid state track detectors
- 6) Measurement of fission yields in thorium and natural uranium samples in fast neutron spectra

Comparison of E+T and Kvinta Setup

E + T setup model

Setup

Method Setup model

• MCNPX simulation

Results

Beam monitors

Conclusion

Kvinta 2011 setup model

61 U rods

14

Kvinta Setup with Lead Shielding

Setup

Method Setup model

• MCNPX simulation

Results

Beam monitors

MCNPX simulations

Setup

Method

Setup model

• MCNPX simulation

Results

Beam monitors

Conclusion

Used version MCNPX 2.7a

- Used Los Alamos la150n neutron and la150h proton libraries
- All available physics models in the code tested
- Most preferred combination of models for spectra calculation INCL-ABLA+FLUKA (time-consuming computation but provides the most reliable results)

Setup

Method

Results

Beam monitors

Conclusion

Beam Monitoring

- deuteron beam with energies of 1, 2, 4, 6 and 8 GeV
- common measurement of beam intensity using ionization chambers
- aluminium and copper foils + SSNTD for beam monitoring
- aluminium foil integral number of deuterons determination, placed several meters away from the set-up

 copper foil – deuteron cross-section measurement, placed together with the aluminium foil

 copper foil cut into pieces – beam position and profile determination, placed directly on the beginning of the target

 copper foil – beam alignment with the target axis, placed on the back of the target (2, 4, 6 GeV experiments without Pb shielding)

Setup

Method

Results

Conclusion

Beam Monitors

Beam integral determination by Al foil

Beam Monitors

Beam Monitors

Setup

Method

Results

Beam monitors

Conclusion

Cu foil cut into 16 pieces 2x2 cm

example of beam position and shape determination (6 GeV exp)

beam centre	beam FWHM
xc 1.42 ± 0.05 cm	xf 1.56 ± 0.05 cm
yc -0.18 ± 0.05 cm	yf 2.24 ± 0.05 cm

4 most active foils cut again into 16 pieces 1x1 cm

beam centre	beam FWHM
xc 1.94 ± 0.10 cm	xf 2.39 ± 0.20 cm
yc 0.03 ± 0.10 cm	yf 2.83 ± 0.20 cm

results from activation foils (Řež group)

results from SSNTD (A. Potapenko)

Kvinta neutron fluxes

Setup

Method

Results

neutron flux

neutron distribution
MCNPX models

 Multiplicity in various models

Beam monitors

Conclusion

Kvinta setup with Pb shielding simulated neutron flux in Al foils

Kvinta neutron fluxes

Setup

Method

Results

neutron flux

neutron distribution
MCNPX models

 Multiplicity in various models

Beam monitors

Conclusion

Kvinta setup with Pb shielding simulated neutron flux in Al foils

Kvinta neutron fluxes

Setup

Method

Results

neutron flux

neutron distribution
MCNPX models

 Multiplicity in various models

Beam monitors

Conclusion

Different types of Kvinta setups simulated neutron flux in AI foils

Kvinta neutron spectra

Setup

Method

Results neutron spectra

neutron distribution
MCNPX models
Multiplicity in various models

Beam monitors

Conclusion

$$N_{yield} = \sum_{n,p,d,\pi} \int \Phi(E) \sigma(E) dE$$

Convolution of cross-sections calculated by TALYS+MCNPX with spectral fluences calculated by MCNPX for neutrons, protons, deuterons and pions

Kvinta setup with Pb shielding longitudinal neutron distribution Experiment 4 GeV December 2011

70

14,0

radial distance from the target axis [cm]

Kvinta setup with Pb shielding radial neutron distribution Experiment 4 GeV December 2011

2,5E-05

Kvinta neutron distribution

Kvinta setup with Pb shielding longitudinal neutron distribution Experiment 1 GeV March 2012

Kvinta neutron distribution

Setup

Method

Results

neutron spectra

neutron distribution

•MCNPX models

• Multiplicity in various models

Beam monitors

Kvinta neutron distribution

Setup

Method

Results

neutron spectra

 neutron distribution

•MCNPX models

• Multiplicity in various models

Beam monitors

Conclusion

Kvinta setup with Pb shielding longitudinal neutron distribution Experiment 4 GeV March 2012

Kvinta neutron distribution

Setup

Method

Results

neutron spectra

neutron distribution

•MCNPX models

• Multiplicity in various models

Beam monitors

Setup

Method

Results

neutron spectra

 neutron distribution

•MCNPX models

 Multiplicity in various models

Beam monitors

Setup

Method

Results neutron spectra

 neutron distribution

•MCNPX models

• Multiplicity in various models

Beam monitors

Conclusion

Kvinta 5 sections setup neutron multiplicity per GeV

Kvinta 5 sections setup with Pb shielding neutron multiplicity per GeV

Setup

Method

Results

neutron spectra

neutron
 distribution

•MCNPX models

• *Multiplicity in various models*

Beam monitors

34

Neutron multiplicity from various models

Setup

Meth

Resi • neu

• neu distr

•MCI

• Mul

Method	Kvinta	5 sections		4 sections		3 sections + Pb	
Doculte	Model	2 GeV	4 GeV	2 GeV	4 GeV	2 GeV	4 GeV
• neutron spectra	Bertini-ABLA	115.7	209.6	112.5	204.1	116.2	208.0
 neutron distribution 	Bertini-Dresner	108.9	197.3	106.1	192.4	109.7	196.4
•MCNPX models	CEM03	118.3	213.1	115.2	207.7	114.7	204.7
 Multiplicity in various models 	INCL-ABLA	112.6	203.3	108.4	197.2	113.8	205.2
Beam monitors	INCL-Dresner	104.1	186.6	100.6	181.6	105.8	189.4
Conclusion	ISABEL-ABLA	113.6	201.9	110.3	196.2	114.5	201.3
conclusion	ISABEL-Dresner	105.8	189.3	102.7	183.9	106.7	189.3

Neutron multiplicity from various models

Setup

GUIUG

Results

neutron spectra

neutron
 distribution

•MCNPX models

• Multiplicity in various models

Beam monitors

Kvinta	5	section	S	5 sections + Pb			
Model	1 GeV	2 GeV	4 GeV	1 GeV	2 GeV	4 GeV	
Bertini-ABLA	56.4	115.7	209.6	60.7	125.5	229.6	
Bertini-Dresner	53.4	108.9	197.3	57.4	118.2	216.5	
CEM03	58.5	118.3	213.1	60.4	123.6	224.9	
INCL-ABLA	54.0	112.6	203.3	57.8	122.5	225.2	
INCL-Dresner	50.7	104.1	186.6	54.6	113.5	207.6	
ISABEL-ABLA	56.8	113.6	201.9	61.0	123.7	222.9	
ISABEL-Dresner	52.8	105.8	189.3	57.0	115.5	209.0	

Setup Method Results • *neutron spectra*

 neutron distribution

•MCNPX models

• *Multiplicity in various models*

Beam monitors

Setup Method

Results

neutron spectra

neutron
 distribution

•MCNPX models

• *Multiplicity in various models*

Beam monitors

Conclusion

Setup

Method

Results

Beam monitors

- made detailed model of the new Kvinta setup consisting of uranium target and blanket
- calculated neutron multiplicity of several modifications of the new Kvinta setup
- performed beam integral, position, shape and alignment monitoring using aluminium and copper foils
 - beam characteristics used as input parameters for simulations
 - simulated neutron fluxes and spectra in diverse positions in the new Kvinta setup and obtained experiment/simulation yield ratios
 - studied dependency on various physics models included in MCNPX

Thank you for your attention