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Some recollections

1 Some recollections

The present work goes on our recent studies of nucleon-nucleon (N-N) scattering
below pion production threshold within a field-theoretical approach based upon method
of unitary clothing transformations (UCTs). Now we present the first application of UCT
method to description of deuteron and its electromagnetic properties.
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Some recollections

Electromagnetic (EM) Static Moments of Bound Systems

Relativistic calculations: eventful history within:
light-front dynamics {Chung et al. PR C39 (1989), Lev et al. PRL83 (1999)}, the
Bethe-Salpeter formalism {Honzawa, Ishida PR C45 (1992), Bondarenko et al. Prog.
Part. Nucl. Phys.48 (2002)}, inclusion of meson exchange and boost contributions of
leading order {Tamura et al. NP A536 (1992), Arenhövel et al. PR C 61(2000)} and
Refs. therein.
Note also a possible way for constructing generators of the Poincaré group (Π) in
quantum field theory (QFT) {Shebeko, Frolov FBS 52 (2012)}
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Some recollections

Starting from operator

~µ =
1
2

∫
d~z~z×~J(~z) (1)

of magnetic dipole moment for a system with current density ~J(~x) (reminescent of
Biot-Savart formula from magnetostatics) one can show after {Sachs62} that its matrix
elements between narrow wave packets are expressed through limit

lim
~q→0

[
− i

2
curl~q〈~q2 |

~J(0)| − ~q
2
〉
]

, (2)

where matrix elements 〈~q2 |~J(0)| − ~q
2 〉 (total angular moment J, its projection MJ and

other quantum numbers, if any, are implied) determine the corresponding current in
Breit frame. Magnetic dipole moment of system, being defined as z-component of
vector (1) for stretched configuration, for deuteron

µd = lim
~q→0

[
− i

2
curl~q〈~q2 ; 1|~J(0)| − ~q

2
; 1〉

]z

. (3)

6,31
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Some recollections

In parallel, considering interaction energy of system with charge density ρ(~x) = J0(~x)
in static external electric field and expanding it in Cartesian electric moments one
encounters quadrupole moment tensor

Qij =

∫
d~x [3xixj − δij~x2]ρ(~x) (i, j = 1(x), 2(y), 3(z)). (4)

Then repeating the same trick with wave packets one gets matrix elements

〈JM′
J |Qij|JMJ〉 = − lim

~q→0

[{
3

∂2

∂qi∂qj
− δij

∂2

∂q2
l

}
〈~q

2
|ρ(0)| − ~q

2
〉
]

. (5)

to introduce electric quadrupole moment Q = 〈JJ|Q33|JJ〉 Again, not necessarily for
deuteron. In this context, let us a little deviation.
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Some recollections

Two Forms of Electron-Deuteron Scattering Amplitude
To ensure gauge-independent (GI) treatment for inevitably approximate calculations
of amplitudes of one-photon radiative processes we prefer to employ a generalization
{Levchuk,Shebeko Phys.At.Nucl.52 (1993),ibid. 62 (1999)}, {Levchuk, Canton, Shebeko
EPJ A 21 (2004)} of the Siegert theorem (cf., {Friar, Fallieros PR C 34 (1986)}, in which
elastic e-d scattering amplitude can be represented in explicitly GI form:

T(ed → e′d′) =
[
ω~ε(e′, e)−~qε0(e′, e)

]
~D(~q) +

[
~q× ~ε(e′, e)

]
~M(~q), (6)

with generalized electric dipole moment

~D(~q) = −iω−1

1∫

0

dλ

λ
∇~q

{[√
λ2~q2 + m2

d − md

]
〈λ~q; M′|ρ(0)|~0; M〉

}
(7)

and generalized magnetic dipole moment

~M(~q) = −i

1∫

0

dλ∇~q × 〈λ~q; M′|~J(0)|~0; M〉, (8)

where we have introduced notation εµ(e, e′) = ūe′(k′)γµue(k) omitting electron polarization
labels. As usually, the Dirac spinor ue(k) (ue′(k′)) describes the incident (outgoing)
electron with the 4-momentum k (k′) and qµ = (ω,~q) = kµ − k′µ (q2

µ = ω2 −~q2 < 0) the
4-momentum transfer.
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Some recollections

These equations have been derived using property

Jµ(~x) = e−i~P~xJµ(0)ei~P~x (9)

and Foldy representation for ~a exp(i~b~c) with arbitrary vectors ~a, ~b and ~c (Foldy L.L.:
Phys. Rev. 92 (1953) 178).
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Some recollections

One should note that the parametrization of deuteron current in terms of three (no
more) covariant FFs becomes possible once current, first, meets gauge-independence
(GI) condition

qµ〈~q; M′|Jµ(0)|~0; M〉 = 0 (10)

and, second, has property

U(Λ)Jµ(0)U†(Λ) = Jν(0)Λ µ
ν (11)

to be 4-vector. By definition, correspondence Λ ⇒ U(Λ) ∀Λ that belong to the Lorentz
group realizes its irreducible representation in Hilbert space H.
Evidently, eq. (10) does not follow merely from continuity equation (CE)

[Pµ, Jµ(0)] = 0, (12)

this e1-order consequence of gauge-invariance principle after Fock and Weyl {Kazes et
al. Ann. Phys. 142 (1982)} Here is spring of some problem in practical calculations.
Thus, one has to handle matrix elements of Nöther operator Jµ(x) = (J0(x) ≡ ρ(x),~J(x))
at space-time point x = (t,~x) = 0, sandwiched between initial |~0; M〉 in rest frame
and final |~P = ~q; M′〉 deuteron states, and we will show finding of them within the so-
called clothed particle representation (CPR) that has been constructed via the method
of unitary clothing transformations (henceforth, UCT method) {[1] Shebeko, Shirokov
Prog. Part. Nucl. Phys. 44(2000);[2] Phys. Part. Nucl. 32(2001)},{[3] Korda, Canton,
Shebeko Ann. Phys. 322 (2007) }
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Hamiltonian and Boost Generator for Meson-Nucleon System in CPR
Following {Greenberg, Schweber Nuovo Cim. (1958)}, CPR for primary Hamiltonian
H ≡ H(α) = HF(α) + HI(α) and other operators (for instance, in case of interacting
meson and nucleon fields) being expressed through the set α of bare-particles creation/annihilation
operators is constructed via unitary clothing transformation (UCT) W(α) = W(αc) =
exp[R(αc)] (R† = −R) that does transition α = W(αc)αcW†(αc) to new set αc of clothed-
particles creation/annihilation operators. Its generator R is determined in such a way
to remove from Hamiltonian with help of similarity transformation

H(α) = W(αc)H(αc)W†(αc) (13)

the so-called bad terms that prevent the bare vacuum and the bare one-particle state to
be the H eigenvectors (details in [1]). It results in representation H = KF(αc)+KI(αc) =
K, where free part KF(αc) = HF(αc) while operator KI(αc) contains interactions between
clothed particles (mesons, nucleons) and destroys physical vacuum Ω (the lowest-
energy H eigenstate) and the clothed one-particle states.
In case with conventional scalar (s), pseudoscalar (ps)and vector (v) meson-nucleon
couplings determined by formulae (3)-(5) in {[4] Dubovik, Shebeko FBS 48(2010)} we
encounter separate four-operator contributions of class [2.2]

K(2)
I (αc) = K(NN → NN) + K(N̄N̄ → N̄N̄) + K(NN̄ → NN̄)

+ K(bN → bN) + K(bN̄ → bN̄) + K(bb′ → NN̄) + K(NN̄ → bb′), (14)
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Hamiltonian and Boost Generator for Meson-Nucleon System in CPR

responsible for different 2 À 2 processes. In particular, N-N interaction operator can
be written as K(NN → NN) =

∑
b

Kb(NN → NN) ≡ KNN ,

Kb(NN → NN) =

∫ ∑
µ

d~p′1d~p′2d~p1d~p2 Vb(1′, 2′; 1, 2)

× b†c (1′)b†c (2′)bc(1)bc(2) ∼ b†c b†c bcbc, (15)

where symbol
∑
µ

denotes summation over nucleon spin projections, 1 = {~p1, µ1}, etc.

Analytic expressions for c-number matrices Vb are given by eqs. (19)-(22) in [4].
In CPR boost operator ~B(αc) ≡ W(αc)~N(αc)W†(αc) = ~B(αc) = ~BF(αc)+~BI(αc) consists
of free ~BF and interaction ~BI parts. Here ~N = ~NF + ~NI is entire boost operator for
interacting fields in instant form of relativistic dynamics employed. The interaction part
~BI repeats operator structure of KI . Relevant expressions can be found in {Shebeko,
Frolov FBS 52 (2012)}
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Hamiltonian and Boost Generator for Meson-Nucleon System in CPR

Here in subspace H2N (spanned onto the basis b†c b†c |Ω〉) we have

~BF =

∫∑
d~p′d~p~B(~p′µ′,~pµ)b†c (~p

′µ′)bc(~pµ),

with
~B(~p′µ′,~pµ) = i

m
4

E~p′ + E~p√
E~p′E~p

u†(~p′µ′)u(~pµ)

[
∂

∂~p′
− ∂

∂~p

]
δ(~p′ −~p).

It also can be divided into two parts

~BF = ~Borb
F + ~Bspin

F

with
~Borb

F =
i
2

∫∑
d~p E~p

{
∂b†c (~pµ)

∂~p
bc(~pµ)− b†c (~pµ)

∂bc(~pµ)

∂~p

}

and
~Bspin

F = −1
2

∫∑
d~p~p× χ†(µ)~σχ(µ)

E~p + m
b†c (~pµ)bc(~pµ),
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3 Deuteron Equation in CPR
Deuteron state |Ψd(~P)〉 ∈ H2N satisfies eigenvalue equation

[HF(α) + HI(α)]|Ψd(~P)〉 = Ed|Ψd(~P)〉
or in CPR

[KF(αc) + KI(αc)]|Ψd(~P)〉 = Ed|Ψd(~P)〉,
with Ed =

√
m2

d + ~P2, where ~P is total deuteron momentum, md = mp + mn − εd is
deuteron mass and εd represents binding energy of deuteron.
Using approximation with KI(αc) = KNN we arrive to a simpler eigenvalue problem

[K0 + KNN ] |~P; M〉 = Ed|~P; M〉
in the subspace H2N spanned onto the basis b†c b†c |Ω〉 with KNN ∼ b†c b†c bcbc and K0 ∼
b†c bc. Here M denotes deuteron spin projection on quantization axis.
Solution of this equation can be represented as

|~P; M〉 =

∫
d~p1d~p2DM(~P;~p1µ1,~p2µ2)b†c (~p1µ1)b†c (~p2µ2)|Ω〉,

with c-number coefficients DM(~P;~p1µ1,~p2µ2) = δ(~P − ~p1 − ~p2)ψM(~p1µ1,~p2µ2) that have
property

ψM(1, 2) = −ψM(2, 1).
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3 Deuteron Equation in CPR

In deuteron rest frame we have

|ψM〉 = [md − K0]
−1 KNN |ψM〉

where
|ψM〉 ≡ |~P = 0; M〉 =

∫
d~pψM(~pµ1,−~pµ2)b†c (~pµ1)b†c (−~pµ2)|Ω〉.

Using basis vectors |p(lS)JMJ , TMT〉 from {DuShe10}, vector |ψM〉 can be written as

|ψM,TMT 〉 =
1√
2

∑ ∞∫

0

p2dp |p(lS)1M, TMT〉ψlST(p),

since deuteron has the invariant spin equal to J = 1. The permissible values of
quantum numbers l, S and T are restricted to property

Pferm|ψM,TMT 〉 = |ψM,TMT 〉,
with space inversion operator determined in {DuShe10}. In fact, there are only two
combinations of T, S and l, namely, T = 0, S = 1 and l = 0, 2

|ψM,00〉 ≡ |ψM〉 =
1√
2

∑
l=0,2

∞∫

0

p2dp |p(l1)1M〉ψl(p),

ψM(~pµ1τ1,−~pµ2τ2) =
1√
2

∑
ψl(p)Ylml(~̂p)(lml1MS|1M)

( 1
2 µ1

1
2 µ2|SMS

) ( 1
2 τ1

1
2 τ2|00

)
.
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3 Deuteron Equation in CPR

At this point, we accept normalization condition

〈ψM′ |ψM〉 = δM′M

which is equivalent to

2
∑ ∫

d~pψ∗M′(~pµ1,−~pµ2)ψM(~pµ1,−~pµ2) = δM′M,

that implies
∞∫

0

p2dp
[
ψ2

0(p) + ψ2
2(p)

]
= 1.

More precisely, these relations should be formulated for wave packets
∫

d~Pa(~P)|~P; M〉.
Each of them is a superposition of eigenvectors of total momentum operator with
eigenvalues ~P close to ~P = 0 by letting packet width goes to zero at end of calculations.
Finally, we get set of homogeneous integral equations for "radial" components
ψl(p)(l = 0, 2)

ψl(p) =
1

md − 2E~p

∑

l′

∞∫

0

k2dkVJ=S=1,T=0
l l′ (p, k)ψl′(k).
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3 Deuteron Equation in CPR

In a moving frame corresponding eigenvector that belongs to value Ed =
√

~P2 + m2
d

can be determined either by solving directly eigenvector equation or using relation

|~P; M〉 = exp[−i~β~B(αc)]|ψM〉
Perhaps, one should note that the required

P̂µ|~P; M〉 = Pµ|~P; M〉
follows from the property of the energy-momentum operator P̂µ = (H, P̂1, P̂2, P̂3) to be
the four-vector, viz.,

e−i~β~BP̂µei~β~B = P̂νL µ
ν (~β).

In these formulae parameters (β1, β2, β3) = ~β of the Lorentz transformation
md(1, 0, 0, 0) ⇒ (P0, P1, P2, P3) = P are related to velocity ~v = ~P/md of moving frame

~β = β~n, ~n = ~v/v, tanh β = v.
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4 Current Density Operator in the CPR
In our approach we consider expansion in R-commutators {SheShi00}

Jµ(0) = WJµ
c (0)W† = Jµ

c (0) + [R, Jµ
c (0)] +

1
2
[R, [R, Jµ

c (0)]] + ...,

where Jµ
c (0) is initial current in which bare operators {α} are replaced by clothed

ones {αc}. This decomposition involves one-body, two-body and more complicated
interaction currents.
In its turn, this operator being between clothed two-nucleon states

ηcJµ(0)ηc = Jµ
one−body + Jµ

two−body,

where operator

Jµ
one−body =

∫
d~p ′d~pFµ

p,n(~p
′,~p)b†c (~p

′)bc(~p)

with coefficients

Fµ
p,n(~p

′,~p) = e
m√

E~p ′E~p
ū(~p ′)

{
Fp,n

1 [(p′ − p)2]γµ + iσµν(p′ − p)νFp,n
2 [(p′ − p)2]

}
u(~p)

which determines interaction of virtual photon with physical (clothed) proton (neutron).
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Such a form follows from representation, in which primary Nöther current operator,
being sandwiched between physical (clothed) states |ΨN〉 = b†c |Ω〉, yields usual on-
mass-shell expression

〈Ψp,n(~p ′)|Jµ(0)|Ψp,n(~p)〉 = Fµ
p,n(~p

′,~p)

in terms of the Dirac and Pauli nucleon FFs.
Of course, the RIA results should be corrected including more complex mechanisms of
e-d scattering, that are contained in

Jµ
two−body =

∫
d~p′1d~p′2d~p1d~p2Fµ

MEC(~p′1,~p
′
2;~p1,~p2)b†c (~p

′
1)b†c (~p

′
1)bc(~p1)bc(~p2). (16)

Analytic expressions for coefficients Fµ
MEC stem from the R-commutators which, first,

belong to the class [2.2] and, second, depend on even numbers of mesons involved.
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5 Some Details of Calculations. Numerical Results and Discussion
First of all, one should note that

µd = Mz(~q = 0) =
1

2md
〈~0; 1|[~B×~J(0)]z|~0; 1〉 (17)

and we will show our calculations in approximation, where ~B ⇒ ~BF and ~J(0) ⇒ ~Jone−body

with usual normalizations Fν
τ (~p′µ′,~pµ) = e pν

E~p
Fτ

1 (0)δµ′µ, Fp
1(0) = 1, Fn

1(0) = 0, 2mFp
2(0) =

µp − 1 = 1.793, 2mFn
2(0) = µn = −1.913.

Now after modest effort we get decomposition

µd = µNR
d + µRC

d ,

into "nonrelativistic" contribution

µNR
d =

{
µn + µp − 3

2
[µn + µp − 1

2
]PD

} [ e
2m

]
.

and relativistic correction

µRC
d =

1
3
√

2

∞∫

0

p2dp(E~p − m)

[
µn + µp

E~p
+

1− µn − µp

m

]

×
{√

2
[
ψ2

2(p)− ψ2
0(p)

]
+ ψ0(p)ψ2(p)

} [ e
2m

]
.

Our calculation with u and w components of deuteron state, depicted in Figs. gives

µNR
d = 0.852, µRC

d = −8.981 · 10−4

µexpt
d = 0.857
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All we need to do our derivations is
i) to calculate vacuum expectation 〈Ω|bcbc b†c bc b†c bc b†c b†c |Ω〉

〈~0; M′|BjJk(0)|~0; M〉 = 2
∫∑

d~pd~q
{
ψ∗M′(~pµ′1,−~pµ2)Bj(~pµ′1,~qµ′2)

−ψ∗M′(~qµ′1,−~qµ′2)Bj(~qµ′1,~pµ2)
}

Fk
τ (~qµ′2,~pµ1)ψM(~pµ1,−~pµ2), (18)

ii) to perform integration in parts and necessary differentiations in r.h.s. (??) coming
µd = µNR

d + µRC
d with

µNR
d =

2m
md

∫∑
d~p ψl′(p)ψl(p)〈Y l′1

11 (~̂p)|[µn + µp]Jz − [µn + µp − 1
2
]Lz|Y l1

11(~̂p)〉, (19)
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µRC
d =

m
md

∫∑
d~p ψl′(p)ψl(p)(E~p − m)

[
µn + µp

E~p
+

1− µn − µp

m

]

〈Y l′1
11 (~̂p)|p̂z(~̂p~S)− Sz|Y l1

11(~̂p)〉. (20)

~L = −i~p× ∂

∂~p
, ~S =

1
2
[~σ(1) + ~σ(2)], ~J = ~L +~S

iii) to utilize properties of spin-angular functions |Y l1
1M(~̂p)〉 deriving final result.
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In parallel, we prefer to handle

Qd = − 1
m2

d

{
〈~0; 1|B2

z J0(0)|~0; 1〉 − 〈~0; 0|B2
z J0(0)|~0; 0〉

}
(21)

to get in a similar way,
Qd = QNR

d + QRC
d . (22)

As in case of magnetic moment we separate a "nonrelativistic" contribution

QNR
d =

1
20

∫
dq q2

{
2
√

2
dψ0(q)

dq

(
dψ2(q)

dq
+ 3

ψ2(q)

q

)
−

(
dψ2(q)

dq

)2

− 6
ψ2

2(q)

q2

}
(23)

and relativistic correction

QRC
d =

1
m2

d

4∑
i=1

I(i), (24)

I(1) = −1
5

∫
dq q4

{
2
√

2
dψ0(q)

dq

(
dψ2(q)

dq
+ 3

ψ2(q)

q

)
−

(
dψ2(q)

dq

)2

− 6
ψ2

2(q)

q2

}
, (25)
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I(2) = −3
√

2
5

∫
dq

q3Eq

Eq + m

[
µn + µp +

Eq

m
(µn + µp − 1)

]

×
{

ψ0(q)
dψ2(q)

dq
− ψ2(q)

dψ0(q)

dq
+ 3

ψ0(q)ψ2(q)

q
+
√

2
ψ2

2(q)

q

}
(26)

I(3) =
1
3

∫
dq

q4

(Eq + m)2

[
µn + µp − 1

2
+

Eq

m
(µn + µp − 1)

]

×
{

4ψ2
0(q) +

14
√

2
5

ψ0(q)ψ2(q) +
37
35

ψ2
2(q)

}
, (27)

I(4) =
4
5

∫
dq

q4

E2
q

{
2
√

2ψ0(q)ψ2(q)− ψ2
2(q)

} [
2E2

q

(
dGp

E(t)
dt

+
dGn

E(t)
dt

)

−q2 − 10Eqm− 4m2

4(Eq + m)2 + (µp + µn)Γ1(q)− (µp + µn − 1)Γ2(q)

]
, (28)

Γ1(q) =
q2 − 2Eqm
(Eq + m)2 , Γ2(q) =

q4 + 3q2m2 + 4mEqq2 + 8Eqm3 + 4m4

2m2(Eq + m)2 . (29)

In the last integral
dGτ

E

dt
|t=0 =

1
6

< r2 >ch
τ (t = (p′−p)2), where < r2 >ch

τ is charge r.m.s.
radius of proton or neutron.
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Relying upon the experience [**] we find

Table 1: The best-fit parameters for the two models. The row Potential B (UCT ) taken from Table
A.1 in [*] (obtained by least squares fitting to OBEP values in Table 1 of Ref. [**] including
deuteron binding energy and low-energy parameters). All masses are in MeV, and nb = 1 except
for nρ = nω = 2.

Model Meson π η ρ ω δ σ, T = 0 (T = 1)

g2/4π [f /g] 14.4 3 0.9 [6.1] 24.5 2.488 18.3773 (8.9437)
Potential B Λ 1700 1500 1850 1850 2000 2000 (1900)

m 138.03 548.8 769 782.6 938 720 (550)
g2/4π [f /g] 13.395 5.0 1.2 [6.1] 17.349 5.0 22.015 (5.514)

UCT Λ 2500 1219 1593 2494 2169 1200 (2500)
m 138.03 548.8 769 782.6 938 720 (550)

* Machleidt, R.: Adv. Nucl. Phys. 19 (1989) 189
** Dubovyk I., Shebeko O.: Few Body Syst. 48 (2010) 109
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Table 2: Low-energy parameters of the nucleon-nucleon scattering. Experimental values are
from Table 4.2 of Ref. [*].

Parameter Bonn B UCT Experiment
as (fm) -23.71 -23.57 -23.748±0.010
rs (fm) 2.71 2.65 2.75±0.05
at (fm) 5.426 5.44 5.419±0.007
rt (fm) 1.761 1.79 1.754±0.008

Table 3: Deuteron properties.

UCT
Parameter Bonn B NR RC Experiment
εd (MeV) 2.223 2.224 2.224575
PD (%) 4.99 4.89

µd (e/2mp) 0.8516 0.8521 -8.981·10−4 0.857406∓000001
Qd (fm2) 0.2783 0.2972 3.115·10−3 0.2860∓0.0015

* Machleidt, R.: Adv. Nucl. Phys. 19 (1989) 189
cf. Chung P.L., Keister B.D., Coester F.: Phys. Rev. C39 (1989) 1544
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Figure 1: Neutron-proton phase parameters plotted versus nucleon kinetic energy in lab. system.
Solid curves calculated for Potential B. Dashed (dotted) - for UCT potential with Potential B
(UCT ) parameters from Table 1. The rhombs show original OBEP results.
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Figure 2: Half-off-shell R-matrices and off-shell potentials at laboratory energy equal to 150 MeV
(p0 = 265 MeV). Solid curves calculated for Potential B. Dashed (dotted) - for UCT potential with
Potential B (UCT ) parameters from Table 1.
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Figure 3: Deuteron wave function ψd
0(p) = u(p). Solid ( dashed ) curves for Bonn B (UCT )

potential.
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Figure 4: Deuteron wave function ψd
2(p) = w(p). Solid ( dashed ) curves for Bonn B (UCT )

potential.
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Summary

Summary

For this exposition we have seen a reasonable treatment of the low-energy N-N scattering
and deuteron properties. In the course of our current work we are trying to understand
to what extent deuteron electromagnetic form factors and structure functions that determine
deuteron photo- and electrodisintegration are sensitive to off-shell effects inherent in
the quasipotentials and currents obtained within the UCT method.
In our opinion, exposed approach has promising prospects, e.g., in the theory of
decaying states (after evident refinements), certainly in quantum electrodynamics and,
we believe, in quantum chromodynamics. Such endeavors are under way.
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