

Recent Results from PHENIX experiment at RHIC

Vladislav Pantuev, Institute for Nuclear Rresearch, Russian Academy of Sciences, Moscow

for PHENIX collaboration

RHIC Run History

"12 years circle"

Beam energy scan

New colliding species

RHIC Run	Year	Species	Energy	Ldt
Run-1	2000	Au+Au	130 GeV	1 μ b-1
Run-2	2001-2	Au+Au	200 GeV	24 μ b-1
		Au+Au	19 GeV	
		p+p	200 Gev	150 nb-1
Run-3	2002/3	d+Au	200 GeV	2.74 nb-1
		p+p	200 GeV	0.35 nb-1
Run-4	2003/4	Au+Au	200 GeV	241 μb-1
		Au+Au	62.4 GeV	9 μb-1
Run-5	2005	Cu+Cu	200 GeV	3 nb-1
		Cu+Cu	62.4 GeV	0.19 nb-1
		Cu+Cu	22.4 GeV	2.7 μ b-1
Run-6	2006	p+p	200 GeV	10.7 pb-1
		p+p	62.4 GeV	100 nb-1
Run-7	2007	Au+Au	200 GeV	813 μb-1
Run-8	2007/2008	d+Au	200 GeV	80 nb-1
		p+p	200 GeV	5.2 pb-1
		Au+Au	9.2 GeV	
Run-9	2009	p+p	200 GeV	16 pb-1
		p+p	500 GeV	14 pb-1
Run-10	2010	Au+Au	200 GeV	1.3 nb-1
		Au+Au	62.4 GeV	100 μ b-1
		Au+Au	39 GeV	40 μ b -1
		Au+Au	7.7 GeV	260 mb-1
Run-11	2011	p+p	500 GeV	27 pb-1
		Au+Au	200 GeV	915 μb-1
		Au+Au	27 GeV	5.2 μb-1
		Au+Au	19.6 GeV	13.7 M events
Run-12	2012	p+p	200 GeV	9.2 pb-1
		p+p	510 GeV	30 pb-1
		U+U	193 GeV	171 μ b-1
		Cu+Au	200 GeV	4.96 nb-1

2

Energy scan. Global variables. $dN/d\eta$

Energy scan. $\mathbf{R}_{\mathbf{A}\mathbf{A}}$

Behavior changes between 39 and 64 GeV

arXiv:1204.1526

27 GeV analysis is underway

Energy scan. Flow, v_2 and v_3

200, 62.4 and 39 GeV PID data shows the same v2, v3 values. Observed flow is saturated in this energy range

Number-Constituen-Qarks scaling of vn for identified charged hadrons observed for the beam energy range of 39–200 GeV confirms partonic flow down to 39 GeV

d+Au data: probing initial state

Direct photons. *No modification in initial hard scattering and PDF compared to p*+*p*

d+Au data: Jet probes.

Jets are reconstructed at mid-rapidity in d+Au up to 40 GeV/c. RdA increases for more peripheral collisions at high pT?

d+Au data: First measurement of ψ '

 $\psi'/(J/\psi) = 2\%$ in p+p, 0.8% in d+Au

ψ ' is strongly suppressed in dAu

Very challenging for models!

U+U collisions. Large eccentricity

Identified particles flow v2 in Au+Au and U+U

Strong radial flow in Tip-Tip enriched events...

... due to geometry or higher energy density?

Similar radial flow at RHIC and LHC

Asymmetric Cu+Au collisions

- Asymmetric coordinate space leads to asymmetric density profile and pressure gradient
- Shower Max Detector (SMD) sees Au-spectator and defines Ψ_1

Flow in Cu+Au collisions, v_1 and v_2

- SMD sees Au-spectators and defines Ψ_1
- Sizable v_1 is seen (direction opposite to AMPT)

J/ψ in Cu+Au and Au+Au

- J/ψ suppression in Au-going direction is the same as Au+Au
- Cu-going direction stronger suppression than in Au+Au

Au+Au. Direct photon RAA with much better statistics

Number-of-collision scaling is valid over the whole range

Direct/thermal photon azimuthal asymmetry. Au+Au, 200 GeV

Photons flow! V₂ *is very similar to hadrons! Very challenging for theory.*

Does it mean that most of "thermal photons" are produced at later time when flow is already developed?

Indeed, thermal photons can flow as much as hadrons if are produced at the stage when flow is already developed

The reason – blu and red photon energy shift

V. Pantuev, arXiv:1105.4033

γ-h correlation in Au+Au

 Associated particles in three angle ranges are integrated

γ-h correlation in Au+Au

Low z_T away side particles distributed over wider angle

 $I_{AA} \equiv \frac{(1/N_{trig}dN/d\xi)_{AA}}{(1/N_{trig}dN/d\xi)_{mn}}$

R_{AA} RHIC energy vs. LHC
π⁰ in Au+Au 200GeV 0-5%, up to 20 GeV/c
Rising slope in R_{AA}: (1.06 +0.34 -0.29) × 10⁻²(GeV/c)⁻¹

Charged hadrons in Pb+Pb 2.76TeV 0-5% RAA for both systems look very similar

Parton Fractional momentum loss

Measure fractional momentum loss ($\delta p_T/p_T$) instead of R_{AA} Different $\delta p_T / p_T$ for same R_{AA}

Energy dependence of $\delta p_T / p_T$

δp_T/p_T decreases significantly going from 200GeV to
 62, 39GeV

Non-photonic single electrons

- Heavy flavor electron R_{AA} is a mixture of charm and bottom contributions
- We really want R_{AA} for **charm** and **bottom** separately

Charm and bottom decomposition

■ For p+p collisions (b->e)/(b->e + c->e) ratio from partial reconstruction of D→e^{+/-}K^{-/+}X

Bottom contribution becomes dominant above 4 GeV/c

First direct c/b decomposition with new Si-VTX detector

New direct measurement of bottom fraction agrees with FONLL

R_{AA} for $c \rightarrow e$ and π^0

Charm contribution is less suppressed

R_{AA} for $c \rightarrow e$, $b \rightarrow e$ and π^0

Bottom contribution is heavily suppressed!

- 39 200 GeV energy scan confirms general features: smooth change of global variables, jet suppression, flow
- High statistics d+Au data give good reference for cold nuclear effects. Big surprise that ψ' are strongly suppressed
- Tip-to-tip U+U collisions demonstrate strong radial flow
- Direct photons with much better statistics confirm Ncollision scaling for hard process. Thermal photons flow!
- Parton fractional momentum loss increases with beam energy from 39 to 200 GeV – more dense matter is formed
- Non-photonic electrons. With new Si-vertex detector can distinguish Charm and Bottom quarks. For a big surprise, electrons from Bottom are suppressed much stronger

Circle of life

