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Quantum space-time and novel geometries:

Discrete (lattice) space-time – Fundamental Plank le ngth lp
(Snyder, 1947; Markov,1948)

Noncommutative geometry (Connes, 1991)

Supergeometry  (Rothstein,1986) 

Hypothesis: Some nonstandard geometries can induce novel formalism 

of quantization (S.M.,2008) 



Motivations of our theory :

Axioms of Set theory and Topology are the basis

of any particular geometry

Study of these  fundamental structures can be impor tant

for the construction of quantum space-time and rela ted quantization

For simplicity only 1+1  geometry will be considered

Example: Set of all  real numbers r is continuous ordered set R1

R1 is equivalent to fundamental set X  of 1-dimensional Euclidian Geometry
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1.  Geometric properties induced by structure of fundamental set

2.   Partial ordering of points, fuzzy ordering, fuzzy sets

3.  Fuzzy manifolds and physical states 

4.  Derivation of Shroedinger dynamics for fuzzy states

5. Interactions on fuzzy manifold and gauge fields

For simplicity only 1+1  geometry will be considered



S      Sets, Topology and Geometry

Example: Fundamental set of 1-dimensional Euclidian geometry is 

(continious) ordered set of elements X = { xl } ;     xl - points

ji xx ,∀ . .i j j ix x o r x x≤ ≤

X
xi             xj

F For  illustration we consider first discrete set X

rst

In classical mechanics the particle  m is ordered ‘material’ point  x(t)



ST - total set; ST = X  P u 

P u = { uj } - partial ordered subset

X
xxi

u1

DDx

Fu1 ~ xk , Dxxk ∈∀

ji xx ≤ it can be also: xi ~ xj - incomparabilty relation

pPPppPartial ordered set- P

B  Beside

u1 ,xk  are incomparable  (equivalent) ST elements

X  = { x l } - ordered subset;

Υ

XDx∈iExample: let’s consider interval-



If f j - fuzzy points, then: if Ffi ~ fk

Ffi , fk ,       wi,k >0 ,   F ={f i}  - set of fuzzy points;  Σ wjk =1

Fuzzy ordered set (Foset) - F ={ f i }       (Zeeman, 1964)

.    .    .    .     .    . 
_ xi

f1

X

EExample: ST - total set

ST = X  F;      F={ f1 }

X – ordered subset

w1i

∃∀

Ffi ~ xk ,      wi,k >0 ,      Σ wjk =1∃

Υ



Continuous fuzzy sets

EExample: ST - total set;     ST = R1 F;

F={ f1 } – discrete subset of fuzzy points

X – continuous ordered subset;  X = { ra }

Υ

w

∀ fi , r ;   w(r) > 0;∃

r

∫ = 1)( drrw

w(r) isn’t probability density, because ST is topological structure , 

and not probabilistic one! 

∞≤≤∞− ar

is fuzzy parameter

ST is  fuzzy space

r~



Partial ordering in classical mechanics

Beside geometric relations between events there is also causal relations 

t

x

events  - causal set:{ e j }

Their time ordering corresponds to:

e1 ≤  e3   ≤ e2  

e3

e1

e2



Partial ordering in classical mechanics

Beside geometric relations between events there is also causal relations

t

x

events  - causal set:{ e j }

Their time ordering corresponds to:

e1 ≤  e3   ≤ e2

now one event dynamically induce another :
e1→ e2

If to describe also causal relations between events:  

e1 ≤  e2 ; 
e1 ~ e3 ;
e2 ~  e3

Soe3 is incomparable dynamically to   e1  ande2

e3

e1

e2



Partial ordering in special relativity

The  causal relations  acquire invariant, principal  meaning due to light cone

t

x

event set:{ e j }

Their time ordering is :
e1 ≤  e3   ≤ e2

Let’s describe also causal relations between events, then:  

e1 ≤  e2 ; 
e1 ~ e3 ;
e2 ~  e3

if e3 is outside the light cone, then other relations
between  e3  and e1,2 can’t exist 

e3

e1

e2
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Classical mechanics:

Massive particle m is ordered  point  x(t)

its state| g } = {(x(t), vx(t),   …}

describesm trajectory

Massive particle is fuzzy point m(t), its coordinate          is fuzzy parameter 

its state|g} = {w(x,t), ….   ? }

x(t0)

x(t)

Fuzzy mechanics:

w(x,t0) w(x,t)

)(~ tx



X

Fuzzy  motion

Fuzzy state  | g } : | g}= {w(x), q1 , q2 … }

Beside w(x), another|g} parameter is - average  m velocity

we shall look for another | g} parameters assuming  they are 

represented as functions q(x)

>< )(tv
ρ

><v
ρ

w(x,t0 )
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Fuzzy  Evolution Equations

Fuzzy state| g } ={w(x), q(x),….}; Let’s consider freew(x,t) evolution

),( txf
t

w −=
∂
∂

Fuzzy (partial) ordering assumes  that only short-distance correlations exist, 

so  w(x) evolution can be described as: 

where f  - arbitrary function

then from  w(x)norm conservation:

∫
∞
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Fuzzy  Evolution Equations

Fuzzy state| g } ={w(x), q(x),….}; Let’s consider freew(x,t) evolution

),( txf
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Fuzzy (partial) ordering assumes  that only short-distance correlations exist, 

so  w(x) evolution can be described as: 

where f  - arbitrary function

then from  w(x)norm conservation:

∫
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∞−

dxxf )( 0),(),( =
∂
∂=

∂
∂= ∫∫

∞

∞−

∞

∞−

dxtxw
t

dxtx
t

w

if to substitute : )( xf
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then 0),(),( =−∞−∞ tJtJ

0),( =±∞ tJfrom  X - reflection invariance:
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then it results in:

- 1-dimensional flow continuity equation



x1
X

w (x,t)

v(x1)

in 1-dimension  m flow can be written as: )()()( xwxvxJ =

where v(x) is  w flow velocity,  it is supposed to be independent of w(x)

hence v(x) can be chosen as free parameter of m state g 

m state g(x) = { w(x), v(x)} – it’s physical (fuzzy) g representation



let’s substitute  v(x) by: 

here  k is arbitrary constant 

∫
∞−

=
x

dvkx ςςα )()(

then average m velocity: <Vx> =        <          >           
dx

dα
k

1

hence α(x) is analogue of  quantum phase

and  so m state is: g = { w(x),α(x)}

It can be transformed to symmetric complex g representation:

)()()( xiexwxg α⋅=

Symmetric Representation of Fuzzy state g

if m state g = { w(x), v(x)}

here g(x)  → {  w(x), v(x)} is unambiguousmap



We start with linear  operator  H for fuzzy dynamics

later  the nonlinear operators will be considered also

For free mmotion H should be invariant                        
0],ˆ[ =

dx

d
H

It means that H can be only polinom:

Here  i can be only even  numbers, because 
noneven i contradict to   X reflection invartiance   
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Evolution Equation for Fuzzy state g

relative to space shifts  so:



equation for  operator  H
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From  flow equation: 
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equation for  operator  H
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From comparison of highest α derivatives it follows  n=2;

fuzzy state g(x,t) obeys to  free Schroedinger equation with mass m = k

k
c

2
1

2 −=



Nonlinear evolution operator

Bargman - Wigner theorem (1964):   g(t0 ) → g’(t)

If arbitrary pure state evolves only into the  pure state and module of scalar 
product for all pure states  |< ψ|φ >|    is conserved, then the evolution operator 
is linear.

Jordan (2006): If for any : g(t0 ) → g’(t)

and is defined unambiguously, then Ut is linear operator

i.e. if pure states evolve only to pure ones 

Fuzzy pure states  g(x,t) evolve only to pure ones, so their evolution should be 
linear

1−
tU

tÛ

tÛ

g(x,t) are normalized complex functions,
we obtained free particle’s quantum evolution on  Hilbert space HHHH



Fuzzy space: F   ==== {     }   induces Hilbert space H   of

normalized complex functions g(x,t)

Observables Q are supposed to be linear, self-adjoint operators on H 

In particular, particle’s momentum:  

hence [px, x] = i commutation relations are obtained from 

geometrical and Set-theoretical arguments, I.e. in this case  fuzzy topology

represents the underlying structure for such operator algebra

x~

dx

d
ipx =

In this model  Plank constant is just coefficient, which connects

x and px scales, so  Relativistic unit system gives its natural description

137
12 =e1== cη



Fuzzy Correlations

We exploit fuzzy state:                                            

Yet more correct expression is: 

)()()( xiexwxg α⋅=

)}',(),({ xxxwg α=

here: )'()()',( xxxx ααα −=

is the state g correlation between points  x, x’

it describes  w(x) flow velocity v(x)and defines state g free evolution.

Such ansatz corresponds to quantum density matrix

More complicated correlations can appear in fuzzy mechanics.



II

Dirac  equation :                                                                      

can be derived assuming relativistic invariance of fuzzy dynamics 

Its fuzzy space: F  F  F  F  = {                }

We didn’t suppose that our theory possesses Galilean invariance, in fact, 

Galilean transformations can be derived from fuzzy dynamics,

if to suppose that any  RF corresponds to  physical object with ∞→m

ψβαψ
)( mp

t
i +=

∂
∂ ρρ

zsr ~~3 ⊗



We derived  free particle’s dynamics from some geometrical 
and set-theoretical axioms.

Is it possible to describe particle’s interactions in the same 
framework ?

We exploited  m states:  g = { w(x), α(x)} defined in 

flat  Hilbert space HHHH

Hypothesys:  By the analogy with general relativity  

we suppose that for fuzzy  topology  the external f ield 

induces curvature of HHHH or HHHH fiber bundleT⊗



Free Schroedinger equation:

is equivalent to system of two equations for real and imaginary parts of

Interactions in Fuzzy Space  
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here  I) is kinematical equation, it connects w(x) and flow velocity

Hence particle’s interactions can be included only in II)
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Free Schroedinger equation:

Is equivalent to system of two equations: 

Interactions in Fuzzy Space  
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here I) is kinematical equation, it connects w(x) and flow velocity

Hence particle’s interactions can be included only in II)

But it supposes their gauge invariance, because α(x,t) is quantum phase
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∂
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+ Hint



Particle’s Interactions in Fuzzy Space  - Toy model
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Let’s consider interaction of two particles m1 , m2 , their states: g1,2 (x,t)

+ Hint

g1
g2

In geometrical framework it’s natural to assume that   Hint is  universal,

i. e.  if                     , then                            It means that 

there is term in  Hint  ~ Q1 Q2  F(r 12 ), where Q1 ,Q2 are particle’s charges. 

02,1 →p
ρ 0int ≠H

x



Particle’s Interactions  on fuzzy manifold

to restore space symmetry two identical particles  n1 , n2 should       
repulse each other  ?

Deflections from m1 free motion induced by m2 presence at some distance,

even if                      ,yet                                          

It means that                                                            for 

02,1 →p
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Hence this is shift of α(x,t) subspace  of Et  = H H H H - fiber bundle

So that each H  H  H  H  (ti ) is flat but their connection  C(ti , tk ) depends on Hint
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Particle’s  Interactions in Fuzzy Space  

So  this toy-model is equivalent to Electrodynamics  if Aµ is massless field

suppose that  m1   is described by Klein-Gordon equation  with  E>0
and m2 is   classical particle,  i.e. m2   
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in initial RF:

For Lorenz transform RF  to RF’  with velocity 
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where : 20 1
'

v

v
AA ρ

ρρ
−

=

A
ρ

'gg →

and 200 1

1
'

v
AA ρ−

=

∞→



Fuzzy Mechanics and Gauge Invariance 

In QFT local gauge invariance is postulated.

We shall argue that in Fuzzy mechanics it can be derived

from global isotopic invariance



D  

Fuzzy state for fermion (iso)doublet

Consider fermion           (iso)spin doublet of mass m0

Fuzzy parameters:                     ;       particle’s  state :

Fuzzy representation:  g =

2SU

- (iso)spin vector

- linear representation

z
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ρρρρ ϕθα

from Jordan theorem   ψs evolution should be linear  
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Nonabelian case: Yang-Mills Fields

Consider interaction of two femions m1 , m2    of             doublet   and suppose 

that their interaction is universal, so  that at                      it gives 

int 1 2 1,2( )H ks s f r= r r

- isospin vectors

To agree with global isotopic symmetry,  two  isospin vectors in nonrelativistic limit

can interact with each other only via this ansatz:

Hence:

- Yang-Mills

s1 s2

For nonrelativistic QCD limit it gives:

But it supposes that local gauge invariance follows from
global  isotopic symmetry :
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and   so :



Yang-Mills  Interactions   

So  we obtain standard Yang-Mills Hamiltonian for p article-field interaction

Suppose that  m1   is described by Klein-Gordon equation  with  E>0

and m2 is classical particle,  i.e. m2                  ;   and

so m2 generates classical          Yang-Mills field
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(Non)locality of interactions on fuzzy space

We supposed that our model interactions are local, yet this is

extra assumption,  two particles with fuzzy coordinates can

interact nonlocally, or  fermion with fuzzy coordinate 

can nonlocally interact with boson field.

x~
12

~x



II
Fuzzy Space and Noncommutative Theories

[px, x] = i commutation relations were obtained from 

geometrical and Set-theoretical arguments, I.e. in this case  fuzzy space

represents the underlying structure for such operator algebra 

What about    [y ,, x] and    [px ,, py]   ?

Modified fuzzy space FFFF supposedly can be  underlying structure 

for them 



Fuzzy Approach to Quantization

e

Consider an arbitrary system  S

How to perform its quantization ?

I) To define main  S coordinates qi and to assume that     
they are fuzzy values  with distributions  w(q).

ii) To analyze S free evolution and to define the state correlations α
between q, q’  points

Example:  Fock quantized fields  { nk }

nk  - particle numbers can be regarded as fuzzy values



Conclusions

1.1. Fuzzy topology is  simple and natural formalism for introduction

of quantization into physical theory

2. Shroedinger equation is obtained from simple assumptions,

Galilean invariance follows from it.  

3. Gauge invariance of fields corresponds to dynamics on fuzzy manifold

4. Interactions in fuzzy space are generically nonlocal



∆1

X

Fuzzy evolution and  linearity

We don’t assume that  w(x,t ) is linear function of w(x’,t0 )

which is standard assumption of classical kinetics  

Example : Boltzman diffusion

w(x,t0 )
w(x,t )

∫ −−= '),'(),'(),( 00 dxtxwttxxGtxw



Clocks, proper times and partial ordering

In special relativity each dynamical system has its own proper time,
there is no universal time, so proper time connected with clock dynamics
of given reference frame    (RF)

ta tb

Constraint: each  event time  t1 in one RF
is mapped to the point on time axe in other RF   t’1

e1 ~ e3
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m particle’s state   |g} = { w(x), α(x) }

The problem : to find dynamical  |g} representation g(x,t) :

is dynamical operator (Hamiltonian)

We have two degrees of freedom:g = { w(x), α(x) },

it can be transferred  to:      g(x) = g1 (x)+ ig2 (x)

such that  g1 (x), g2 (x) = 0,   if  w(x) = 0 

This is symmetric  g representation

example:
)()()( xiexwxg α⋅=

gH
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Generalization of   event time mapping 

one can substitute points by    δ-functions     

ta ~ e3



FuzzFuzzy dynamics – space symmetry restoration

as the possible fundamental low of  dynamics

X

w0

w(t)

Low of   fuzzy evolution :

space  symmetry of m state |g} is restored as fast as possible :  

So free m evolution U(t) :   w0(x)      const   at very large t

Interactions: to restore space symmetry two identical particles e1 , e2
should repulse each other 

E         Global  symmetries are  important in quantum physics 

Free particle m: 

w0(x):  space  shift  symmetry

is broken

w0



m motion can be described as the space symmetry violation  for |g}

w(x)

α(x)

X

m velocity: <Vx> = <      >
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α(x)  is analog of quantum phase
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fffffff



∆1 ∆2
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v(x1 ) v(x2 )

henchence w flow equation can be written as:
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FuzzFuzzy mechanics – space symmetry restoration

as the general low of free motion


