DETERMINATION OF FAST NEUTRON SPECTRUM BY A DEFORMATION OF THE REFERENCE SPECTRUM EXPANDED ON LEGENDRE POLYNOMIALS IN ACCORDING TO REACTION RATES IN THRESHOLD DETECTORS

¹S.Korneyev, ²A.Khilmanovich , ²B.Martsynkevich

¹Joint Institute for Power and Nuclear Research-Sosny, Minsk, Belarus;

²B.I.Stepanov Institute of Physics, Minsk, Belarus;

Введение. К настоящему времени имеется широкий набор программ, используемых для восстановления спектров по данным о скоростях ядерных реакций, имеющих разные пороги. Часть программ рассмотрена в работах [1, 2]. К таким программам относятся: многогрупповой метод; аппроксимация спектра быстрых нейтронов рядом; программа, использующая метод регуляризации для определения спектра быстрых нейтронов; метод экспоненциальной аппроксимации; метод деформации спектра; «экспрессный» метод; метод наименьших относительных среднеквадратичных отклонений; метод эффективных пороговых сечений и др.

Особенностью всех этих методов является использование априорной информации об измеряемом спектре нейтронов. Такая информация может быть задана в виде аналитической функции или численной информации, полученной, например, методом Монте-Карло. В <u>большинстве методов используется итерационный процесс подгонки рассчитываемых скоростей реакций к экспериментальным значениям</u>. Как и следует ожидать, вследствие сложности программ в деталях известной только разработчику, многие из методов не получили широкого распространения. К наиболее часто используемым программам следует отнести STAY-SL [3] и SAND-2 [4].

Отметим также, что во всех перечисленных методах требуется детальная информация о сечениях ядерных реакций в зависимости от энергии нейтронов. Такая информация достаточно хорошо известна для низких энергий – до 20 МэВ, что требуется для реакторных исследований.

Для высоких энергий нейтронов – вплоть до 100...200 МэВ в ряде случаев сечения ядерных реакций в зависимости от энергии отсутствуют. Выход из этой ситуации можно найти с помощью отмеченного выше метода эффективных пороговых сечений путем его модификации. Перейдем к более подробному его изложению.

- [1] Крамер-Агеев, Е.А. Активационные методы спектрометрии нейтронов / Е.А. Крамер-Агеев, В.С. Трошин, Е.Г. Тихонов. М.: "Атомиздат", 1976. 232 с.
- [2] Ломакин, С.С. Радиометрия нейтронов активационным методом. / С.С. Ломакин, В.И. Петров, П.С. Самойлов. 2-е изд.. М.: Энергоатомиздат, 1983. 141 с.

Метод эффективных пороговых сечений. В эксперименте регистрируется конечный дискретный набор скоростей пороговых реакций *I_n*

$$\int_{0}^{\infty} \sigma_{n}(E) \varphi(E) dE = I_{n}, \quad 1, 2, \dots, N.$$
⁽¹⁾

Это связано с конечным числом типов радионуклидов, существующих в природе. Задача решения систем уравнений (1) относительно φ(*E*) с найденными в эксперименте значениями *I_n*, имеющими соответствующие погрешности Δ*I_n*, относится к классу некорректно поставленных задач [5]. Вследствие неполного определения *I_n* на всей оси переменной *n* и наличия экспериментальных погрешностей Δ*I_n* решение системы (1) неустойчиво к малым изменениям значений *I_n*. В этом случае говорят о приближенном нахождении функции φ(*E*) путем решения некорректно поставленной задачи.

Особенностью задачи (1) является то, что ядра системы уравнения $\sigma_n(E)$ (сечения *n*-х пороговых ядерных реакций) имеют область, в которой они принимают нулевые значения

$$\sigma(E) = 0; \quad 0 \le E \le E_n. \tag{2}$$

Задача существенно упростилась бы, если бы функция $\sigma_n(E)$ имела вид ступеньки, описываемой с помощью функции Хевисайда $H(E-E_n)$,

$$\sigma_{n}(E) = \sigma_{n}^{\mathfrak{s}\phi} \cdot H(E - E_{n}), \qquad (3)$$

$$H(E - E_{n}) = \begin{cases} 0; & 0 \le E \le E_{n}, \\ 1; & E \ge E_{n}, \end{cases} \qquad (4)$$

где

- а σ_n^{эф} постоянная величина, называемая эффективным сечением реакции. Для определения σ_n^{эф} обычно используется опорный спектр φ^{on}(*E*):
- [5] Тихонов, А.Н. Методы решения некорректных задач: учеб. пособие для вузов / А.Н. Тихонов, В.Я. Арсенин. 3-е изд., исправленное. – М.: Гл. ред. физ.-мат. лит., 1986. – 288 с.

$$\int_{0}^{\infty} \sigma(E) \varphi^{on}(E) dE = \int_{0}^{\infty} \sigma_n^{o\phi} H(E - E_n) \varphi^{on}(E) dE = \sigma_n^{o\phi} \int_{E_n}^{\infty} \varphi^{on}(E) dE$$
(5)

Откуда

$$\sigma_n^{\mathfrak{s}\phi} = \frac{\int_0^\infty \sigma(E)\varphi^{\mathfrak{o}n}(E)dE}{\int_{E_n}^\infty \varphi^{\mathfrak{o}n}(E)dE}$$

(6) В соответствии с (6) эффективное сечение реакции $\sigma_n^{, 3\phi}$ является средним значением сечения $\sigma_n(E)$, усредненного по опорному спектру $\phi^{on}(E)$. Знаменатель в выражении (6)

$$G_n = \int_{E_n}^{\infty} \varphi^{on}(E) dE$$
(7)

носит название опорной интегральной функции.

С учетом выражения (3) система уравнений (1) преобразуется следующим образом:

$$I_{n} = \int_{0}^{\infty} \sigma_{n}^{\varphi\phi} H(E - E_{n}) \varphi(E) dE = \sigma_{n}^{\varphi\phi} \int_{0}^{\infty} H(E - E_{n}) \varphi(E) dE = \sigma_{n}^{\varphi\phi} \int_{E_{n}}^{\infty} \varphi(E) dE = \sigma_{n}^{\varphi\phi} F(E_{n}),$$
(8)

В выражении (8)

$$F(E_n) = \int_{E_n}^{\infty} \varphi(E) dE$$
(9)

значения интегральной функции для ядерных реакций с порогами энергий *E_n*. Выражение (8), записанное в виде

$$F_{n} = \frac{I_{n}}{\sigma_{n}^{\frac{3\phi}{n}}}, \quad n = 1, 2, ..., N$$
, (10)

представляет собой набор значений функции $F(E_n)$ в зависимости от E_n . По дискретным значениям F_n строится функция F(E)

$$F(E) = \int_{E}^{\infty} \varphi(E') dE', \qquad (11)$$

которая называется интегральным спектром (интегральной функцией).

В соответствии с известной теоремой Ньютона и Лейбница производная от первообразной функции F(E) по переменному пределу E есть подинтегральная функция $\varphi(E)$, т.е. искомое решение системы (1)

$$\frac{dF(E)}{dE} = -\varphi(E). \tag{12}$$

При использовании в выражении (5) опорного спектра φ^{οπ}(*E*) подразумевается, что в результате вычислений будет найдена такая деформирующая функция ψ(*E*), что произведение

$$\varphi(E) = \psi(E)\varphi^{on.}(E) \tag{13}$$

позволит рассчитать искомый спектр нейтронов.

Основным требованием любого метода восстановления спектра быстрых нейтронов, в том числе и метода деформации опорного спектра, является использование минимального количества итераций *K*, в результате которых исходный опорный спектр (нулевое приближение) $\varphi_0(E)$ будет стремиться к реальному спектру нейтронов $\varphi(E)$. Формально процедура поиска функции $\psi(E)$ может быть представлена следующей схемой:

$$\varphi(E) = \psi_1(E)\varphi_0(E) \rightarrow \varphi_2(E) = \psi_2(E)\varphi_1(E) \rightarrow \dots \rightarrow \varphi_K(E) = \psi_K(E)\varphi_{K-1}(E) \quad (14)$$

Следовательно, последовательность расчета деформирующей функции $\psi(E)$ выглядит как

 $\varphi_0(E) \longrightarrow \psi_1(E) \varphi_0(E) \longrightarrow \psi_2(E) \psi_1(E) \varphi_0(E) \longrightarrow \dots \longrightarrow \psi_K(E) \psi_{K-1}(E) \dots \psi_1(E) \varphi_0(E) \approx \varphi(E) \quad ,(15)$

при которой

$$\psi(E) = \psi_{K}(E)\psi_{K-1}(E)...\psi_{1}(E) \qquad (16)$$

В рассматриваемом ниже подходе при нахождении функции $\varphi(E)$ предлагается совместить достоинства метода эффективных пороговых сечений и метода деформации опорного спектра с помощью разложения деформирующей функции в ряд по полиномам Лежандра. Однако, в отличие от обычно используемого метода деформации, применяемого при нахождении искомого спектра (функции $\varphi(E)$ (13)), нами деформирующая функция используется для расчета интегральной функции *F*(*E*) (11), которую также обозначим как $\psi(E)$

$$F(E) = \psi(E)G(E)$$
(17)

Такой перенос акцента в расчетах на F(E) связан с тем, что интегральная функция имеет более простой вид по сравнению с дифференциальной функцией $\varphi(E)$. Действительно, F(E) является монотонно убывающей функцией, стремящейся к нулю при приближении к максимальной энергии в спектре E_{max} , в то время как дифференциальная функция $\varphi(E)$ может иметь несколько максимумов. Следовательно, функция F(E) может быть представлена более коротким рядом, т. е. число M искомых коэффициентов a_m ряда будет небольшим.

Вместе с тем, следует отметить, что для более корректного определения формы спектра $\varphi(E)$ с помощью дифференцирования интегральной функции *F*(*E*) (12) число используемых скоростей реакций *I_n* (10) должно быть достаточно большим.

Очевидно, что в выражении (17) в качестве интегральной опорной функции может быть использована функция

$$G(E) = \int_{E}^{E^{\max}} \varphi^{on}(E') dE', \qquad (18)$$

в которой под знаком интеграла стоит $\varphi^{on}(E')$, использовавшаяся ранее при расчете эффективного сечения реакции $\sigma_n^{, э\phi}$. (6). Представим деформирующую функцию $\psi(E)$ в виде разложения по полиномам

Лежандра $P_m(E)$, ограничившись конечным числом M членов

$$\psi(E) = \frac{F(E)}{G(E)} = \sum_{m=1}^{M} a_m P_m(E)$$
(19)

Особенность использования ортогональных функций при поиске деформирующей функции $\psi(E)$ состоит в том, что качественное представление рассматриваемой функции (в нашем случае интегральной функции *F*(*E*)) может быть достигнуто путем использования небольшого количества членов ряда. Преимущество полиномов Лежандра, используемых в предлагаемом методе, например, по сравнению с разложением в ряд Фурье, состоит в том, что уменьшаются осцилляции решения $\psi(E)$ для больших энергий *E* при относительно малом числе уравнений *N*(10).

При использовании опорного спектра $\varphi^{on}(E)$ близкого по форме к искомому $\varphi(E)$ число слагаемых $a_m P_m(E)$, стоящих под знаком суммы в (19), может быть ограничено одним (*M*=1). Так как $P_0(E)=1$, это означает, что искомый спектр будет равен произведению опорного спектра $\varphi^{on}(E)$ на некоторый найденный постоянный для всего спектра коэффициент a_0 .

Отметим, что использование в расчетах функции $\psi(E)$ близкой к константе, позволяет провести предварительный анализ используемых в расчете значений F_n (10), полученных в результате использования экспериментальных значений скоростей I_n и эффективных сечений реакций $\sigma_n^{3\phi}$.

Определение коэффициентов разложения деформирующей функции $\psi(E)$ в ряд по полиномам Лежандра. В конечном итоге задача определения интегральной функции F(E) сводится к определению коэффициентов разложения a_m функции

$$\psi(E) = \sum_{m=1}^{M} a_m P_m(E)$$

по известным экспериментальным значениям *F_n* и заданной опорной функцией *G*(*E*).

Для проведения дискретных вычислений будем использовать полиномы Лежандра $P_m(E)$ в виде P_{mn} .

Система (1), содержащая *N* интегральных уравнений, по отношению к числу искомых коэффициентов *a_m* в выражении (20) *M* является сильно переопределенной: *N*»*M*. Поэтому значения *a_m* будем искать методом наименьших квадратов, используя требование минимума функционала

$$\sum_{n=1}^{N} p_n \left(\psi_n - \sum_{m=1}^{M} a_m P_{mn} \right)^2 = \min.$$
(21)

(20)

В выражении (21) для реакции *n* используется весовой множитель p_n , так как погрешность восстановленного спектра $\Delta \varphi(E)$ помимо зависимости от погрешностей ΔI_n и $\Delta \sigma_n^{e\phi}$ зависит также и от способа построения интегральной функции F(E) по дискретным значениям F_n или, что эквивалентно, деформирующей функции ψ_n .

Требование минимума (21) будет выполнено при условии

$$\frac{\partial}{\partial a_l} \sum_{n=1}^N p_n \left(\psi_n - \sum_{m=1}^M a_m P_{mn} \right)^2 = 0, \qquad l = 1, 2, \dots, M$$
(22)

или

$$\sum_{n=1}^{N} p_n \left(\psi_n - \sum_{m=1}^{M} a_m P_{mn} \right) P_{\ln} = 0, \qquad l = 1, 2, \dots, M$$
(23)

Уравнения системы (23) последовательно преобразуется следующим образом:

$$\sum_{n=1}^{N} p_{n} \psi_{n} P_{\ln} = \sum_{n=1}^{N} p_{n} \sum_{m=1}^{M} a_{m} P_{mn} P_{\ln}, \qquad (24)$$

$$\sum_{n=1}^{N} p_n \psi_n P_{\ln} = \sum_{m=1}^{M} a_m \sum_{n=1}^{N} p_n P_{mn} P_{\ln}$$
(25)

Окончательно система уравнений (23) преобразуется в определенную и имеет вид

$$\sum_{m=1}^{M} a_m r_{lm} = q_{l}, \qquad l = 1, 2, \dots, M$$
(26)

где:

$$r_{\rm ln} = \sum_{n=1}^{N} p_n P_{mn} P_{\rm ln}$$
(27)

И

$$q_l = \sum_{n=1}^{N} p_n \psi_n P_{\ln}$$
(28)

а а_т – искомые коэффициенты.

Характеристиками решения системы является отклонение полученных таким образом значений от исходных значений деформирующей функции

$$\Delta_n = \sum_{m=1}^{M} a_m P_{mn} - \psi_n, \qquad n = 1, 2, ..., N$$
(29)

и среднее квадратичное отклонение

$$\kappa^{2} = \sum_{n=1}^{N} \frac{\Delta_{n}^{2}}{N-1}$$
(30)

Использование опорной функции и сходимость решения. При разработке программы было проведено исследование сходимости решения в процессе выполнения повторных итераций. Например, в качестве опорной функции была задана функция, не зависящая от энергии, т. е. константа $\phi^{on}(E)=1$. В качестве модельной функции спектра была выбрана экспоненциальная функция $\phi(E)=Aexp(-\mu E)$, с использованием которой были рассчитаны скорости реакций. Уже после первой итерации в решении появляется множитель, содержащий экспоненциальную зависимость от энергии.

Отметим, что использование опорной функции, близкой к реальному спектру нейтронов, позволяет сократить число итераций и повысить точность конечного результата. В качестве такой опорной функции может быть использован спектр нейтронов, полученный в результате численного расчета, например, методом Монте-Карло.

Показано, что для получения корректных спектров нейтронов наряду с использованием широкого набора пороговых реакций необходимо, чтобы погрешности определяемых экспериментально значений интегральной функции *F*(*E_n*) не превышали ~50%. В этом случае можно ограничиться числом членов ряда разложения деформирующей функции (20), равным 4.

Погрешность восстановленного спектра нейтронов $\Delta \varphi(E)$ рассчитывается следующим образом. Так как в соответствии с (12) искомый дифференциальный спектр является функцией интегрального спектра $\varphi(E)=-dF/dE=f(F)$, то очевидно, что абсолютная погрешность $\Delta \varphi(E)$ обусловлена формой интегрального F(E) спектра и его абсолютной погрешностью $\Delta F(E)$. Поэтому

$$\Delta \varphi \approx \varphi'(F) \Delta F \tag{31}$$

Взяв производную от сложной функции восстановленного спектра по энергии, получим

$$\frac{d\varphi}{dE} = \frac{d\varphi}{dF} \cdot \frac{dF}{dE}$$
(32)

Отсюда следует, что

$$\varphi'(F) = \frac{\frac{d\varphi}{dE}}{\varphi(E)}$$
(33)

Производную *dq*/*dE* как функцию энергии *E* можно рассчитать численным образом по 5, 7 и более точкам спектра].

Абсолютная погрешность интегрального спектра $\Delta F(E)$, входящая в выражение (31), для энергии $E=E_n$ зависит от скорости реакции I_n и ее погрешности ΔI_n , а также найденного значения эффективного сечения реакции и его погрешности и рассчитывается обычным образом:

$$\Delta F(E_n, I_n, \sigma_n^{\circ \phi}) = \left[\left(\frac{\partial F_n}{\partial I_n} \right)^2 (\Delta I_n)^2 + \left(\frac{\partial F_n}{\partial \sigma_n^{\circ \phi}} \right)^2 (\Delta \sigma_n^{\circ \phi})^2 \right]^{1/2} = \left[\left(\frac{1}{\sigma_n^{\circ \phi}} \right)^2 (\Delta I_n)^2 + \left(\frac{I_n}{\sigma_n^{\circ \phi}} \right)^2 (\Delta \sigma_n^{\circ \phi})^2 \right]^{1/2}$$

В соответствии с выражениями (31) и (33)-(34) по найденным значениям $\varphi(E)$, $d\varphi/dE$ и $\Delta F(E_n)$ строится коридор погрешностей $\Delta \varphi(E)$.

(34)

Максимальное и минимальное значения коридора погрешностей $\Delta \varphi(E)$ также могут быть найдены путем двух дополнительных расчетов спектра нейтронов с использованием значений интегральной функции $F_n + \Delta F_n$ и $F_n - \Delta F_n$ (10).

В разработанной программе восстановления спектров быстрых нейтронов используются сечения реакций из библиотеки [7]. Взятые из библиотеки сечения реакций интерполировались на промежуточные энергии с шагом 50 кэВ. Все расчеты, включая расчет полиномов Лежандра, суммирование, численное дифференцирование, также выполнялись с шагом по энергии равным 50 кэВ.

Для многих реакций сечения известны лишь до 20 МэВ. Поэтому для тех реакций, у которых отсутствуют сечения выше 20 МэВ, использовалось аналитическое продление сечения вплоть до 150 МэВ [7]. Учет таких «хвостов» позволяет более точно рассчитать эффективное сечение, особенно для реакций, имеющих высокие пороги.

В табл. 1 приведены характеристики продуктов 48 пороговых реакций, используемых нами для восстановления спектров быстрых нейтронов, а на рис. 1, в качестве примера, восстановленный спектр нейтронов по результатам эксперимента по облучению свинцовой нейтронообразующей мишени протонами фазотрона ЛЯП ОИЯИ с энергией 660 МэВ. На этом же рисунке приведен коридор погрешностей восстановленного спектра. В эксперименте использовались активационные детекторы из следующих 12 материалов: *Cd, Pb, Bi, Cu, Fe, Co, Zr, In, Mg, Al, Ni, Ti*.

[7] A.J. Koning and D. Rochman, Nuclear Research and Consultancy Group (NRG), TENDL-2011 http://www.talys.eu/

Таблица 1. Реакции, выстроенные в порядке возрастания эффективных пороговых энергий и физические характеристики ядер-продуктов

Nº	Реакция	<i>T</i> _{1/2} ядра-продукта	Е _ү , кэВ	Ι _γ , %	<i>Е^{пор.}</i> , МэВ
1	$^{111}Cd (n, n^{\gamma}) ^{111}Cd^{m}$	48,7 мин	245,4	94,2	0,25
2	115 In (n, n` γ) 115 In ^m	4,486 ч	336,2	45,4	0,35
3	⁴⁷ Ti (n, p) ⁴⁷ Sc	3,351 сут	159,4	68,0	0,75
4	⁵⁸ Ni (n, p) ⁵⁸ Co	70,8 сут	810,8	99,4	0,90
5	204 Pb (n, n` γ) 204 Pb ^m	66,9 мин	911,7	96,5	0,95
6	⁵⁴ Fe (n, p) ⁵⁴ Mn	312,5 сут	834,8	100	1,25
7	⁶¹ Ni (n, p) ⁶¹ Co	1,65 ч	909,2	3,01	2,75
8	⁴⁶ Ti (n, p) ⁴⁶ Sc	83,83 сут	889,2	100	3,05
9	⁵⁹ Co (n, p) ⁵⁹ Fe	44,529 сут	1099,2	56,1	3,45
10	90 Zr (n, p) 90 Y ^m	3,19 ч	479,3	91,0	3,85
11	⁶⁵ Cu (n, p) ⁶⁵ Ni	2,52 ч	1482	23,5	3,95
12	54 Fe (n, α) 51 Cr	27,7 сут	320,1	9,83	4,75

10	560 () 560 (2.570	046.0	00.0	5 40
13	³⁶ Fe (n, p) ³⁶ Mn	2,578 ч	846,8	98,9	5,40
14	⁴⁸ Ti (n, p) ⁴⁸ Sc	43,7 ч	983,5	100	5,95
15	24 Mg (n, p) 24 Na	15,0 ч	1368,6	100	6,15
16	27 Al (n, α) 24 Na	15,0 ч	1368,6	100	6,75
17	¹¹¹ Cd (n, p) ¹¹¹ Ag	7,45 сут	342,1	6,69	6,80
18	59 Co (n, α) 56 Mn	2,578 ч	846,8	98,9	6,95
19	⁹⁶ Zr (n, 2n) ⁹⁵ Zr	63,91 сут	756,7	55,0	8,05
20	²⁰⁴ Pb (n, 2n) ²⁰³ Pb	52,05 ч	279,2	80,1	8,65
21	92 Zr (n, p) 92 Y	3,54 ч	934,5	13,9	8,75
22	¹¹⁵ In (n, p) ¹¹⁵ Cd	53,46 ч	527,7	32,9	8,90
23	¹¹⁶ Cd (n, 2n) ¹¹⁵ Cd	53,46 ч	492,1	10,2	9,05
24	¹¹⁵ In (n, 2n) ¹¹⁴ In ^m	49,51 сут	190,3	15,4	9,60
25	112 Cd (n, 2n) 111 Cd ^m	48,7 мин	245,4	94	10,15
26	¹¹³ Cd (n, p) ¹¹³ Ag	5,3 ч	298,6	100	10,25
27	⁶⁵ Cu (n, 2n) ⁶⁴ Cu	12,7 ч	1346	0,49	10,45
28	¹⁰⁸ Cd (n, 2n) ¹⁰⁷ Cd	6,49 ч	828,9	0,177	10,85
29	⁵⁹ Co (n, 2n) ⁵⁸ Co	70,8 сут	810,8	99,4	11,05
30	50 Ti (n, α) 47 Ca	4,53 сут	1297	74,9	11,45

31	¹¹² Cd (n, p) ¹¹² Ag	3,12 ч	616,8	42,7	11,50
32	⁹⁰ Zr (n, 2n) ⁸⁹ Zr	3,27 сут	909,2	99,9	12,45
33	⁵⁸ Ni (n, 2n) ⁵⁸ Co	1,52 сут	1378	77,9	13,45
34	²⁰⁹ Bi (n, 3n) ²⁰⁷ Bi	38 лет	1064	74,9	15,40
35	⁵⁹ Co (n, 3n) ⁵⁷ Co	270,9 сут	122,1	85,6	20,95
36	⁹¹ Zr (n, 3n) ⁸⁹ Zr	3,27 сут	909,2	99,9	22,45
37	⁶³ Cu (n, 3n) ⁶¹ Cu	3,408 ч	656,0	10,1	22,50
38	⁹⁰ Zr (n, 3n) ⁸⁸ Zr	83,4 сут	392,9	100	24,00
39	²⁰⁹ Bi (n, 4n) ²⁰⁶ Bi	6,243 сут	803,1	98,9	24,95
40	⁵⁴ Fe (n, 3n) ⁵² Fe	8,275 ч	168,7	99,2	27,45
41	²⁰⁹ Bi (n, 5n) ²⁰⁵ Bi	15,31 сут	703,4	31,1	33,35
42	⁵⁹ Co (n, 4n) ⁵⁶ Co	78,76 сут	846,8	99,9	36,85
43	²⁰⁹ Bi (n, 6n) ²⁰⁴ Bi	11,2 ч	899,2	98,0	45,00
44	⁵⁹ Co (n, 5n) ⁵⁵ Co	17,54 ч	931,5	75,0	53,20
45	²⁰⁹ Bi (n, 7n) ²⁰³ Bi	11,76 ч	820,2	29,6	54,75
46	²⁰⁹ Bi (n, 8n) ²⁰² Bi	1,67 ч	960,7	99,3	65,10
47	²⁰⁹ Bi (n, 9n) ²⁰¹ Bi	108 мин	785,9	29,5	77,30
48	²⁰⁹ Bi (n, 10n) ²⁰⁰ Bi	36,4 мин	1026	100	83,40

Рисунок 1 – Восстановленный спектр нейтронов для точки с координатами r=0 см и z=30 см нейтронообразующей свинцовой мишени (фазотрон ЛЯП, февраль 2011 г.).

Заключение. Разработанная программа предназначена, прежде всего, для восстановления спектра быстрых нейтронов в широком диапазоне энергий, включая и высокие энергии – вплоть до 100 МэВ. В ее основе лежат: 1) метод эффективных пороговых энергий, 2) метод деформации опорного спектра с использованием для этой цели разложения деформирующей функции в ряд по полиномам Лежандра, 3) метод итераций, позволяющий по найденному спектру уточнять эффективные сечения реакций. В программе используются 48 реакций, имеющих эффективные пороги, лежащие в интервале от 0,25 МэВ до 83,4 МэВ. В программе используются весовые функции для каждой из скоростей реакции, учитывающие статистическую погрешность числа отсчетов зарегистрированного аналитического пика в γ -спектре, а также удаленность пороговой энергии реакции от ближайших пороговых энергий.

Структура программы допускает введение дополнительных пороговых реакций.

Настоящая программа была использована в экспериментах по определению характеристик нейтронных полей в ядерно-физической установке КВИНТА [8], облучаемой дейтронами ускорителя Нуклотрон-М ЛФВЭ ОИЯИ с энергиями 1 – 8 ГэВ.

Авторы выражают признательность коллегам, участвовавшим в совместных экспериментах, В.С.Пронских, В.В.Чилапу за полезные дискуссии. Выражаем признательность организаторам исследований С.И.Тютюнникову и М.Г.Кадыкову за конструктивную помощь при проведении экспериментальных работ.

[8] Чилап В.В. Солодченкова С.А., Чиненов А.В. и др. Ядерно-физическая энергетика – физико-технические основы и результаты первых экспериментов. Вестник Национального ядерного центра Республики Казахстан – 2011, декабрь, выпуск 4. С. 68 – 76.

Спасибо за внимание!

С.В.КОРНЕЕВ¹, <u>Б.А.МАРЦЫНКЕВИЧ</u>², А.М.ХИЛЬМАНОВИЧ²

ВОССТАНОВЛЕНИЕ СПЕКТРА БЫСТРЫХ НЕЙТРОНОВ МЕТОДОМ ДЕФОРМАЦИИ ОПОРНОГО СПЕКТРА, ПРЕДСТАВЛЯЕМОЙ В ВИДЕ ФУНКЦИИ РАЗЛОЖЕНИЯ ПО ПОЛИНОМАМ ЛЕЖАНДРА

¹Объединенный институт энергетических и ядерных исследований-Сосны НАН Беларуси, ²Институт физики им. Б.И.Степанова НАН Беларуси