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Main topics
• Nonfactorizable two-particle quantum states
• Two-particle spin density matrix and correlation tensor
• Spin correlations at the generation of pairs of identical particles with

close momenta
• Spin correlations and angular correlations in the decays of two

unstable particles
• Spin correlations at the generation of          pairs in multiple processes
• Angular correlations in the decays of          pairs  and the “mixed phase”
• “Incoherence” inequalities for correlation tensor components and their 

violations in two-particle quantum systems
• Quantum character of spin correlations; processes

;                     ;       

• Correlations of polarizations in the system of  two photons
• Correlations of pairs of neutral K mesons in inclusive multiparticle

processes with strangeness conservation
• Correlations of pairs of neutral heavy mesons  (                )
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1. Nonfactorizable two-particle quantum states

• Nonfactorizable (entangled) states of two particles cannot be presented, in 
principle, as a mere direct product of two one-particle states :

superposition of pairs of two-particle states, 

• When a two-particle state is nonfactorizable, then, due to quantum correlations,
the character of measurements performed for particle 1 determines the readout of 
the detector analyzing the state of particle 2 – without any direct force action . 

• Selection of the different states and for particle 1 only leads to 
two different states of particle 2:
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• For the “mixed” two-particle nonfactorizable state ,

the two-particle density matrix cannot be presented as a sum of direct 
products of one-particle density matrices with non-negative coefficients :

In the case of a pure two-particle nonfactorizable state, the 
respective one-particle states are “mixed” -- they should be described
by one-particle density matrices, but not by vectors of state ( wave  
functions) quantum-mechanical Einstein – Podolsky – Rosen 
effect, which is often considered as a “paradox” .

∑ ≥⊗≠ 0,ˆˆˆ )2()1()2,1(
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2. Two-particle spin density matrix 
and correlation tensor

• Spin density matrix of two particles with spin ½ :                                                        

•

- two-row unit matrix ;                                   - vector Pauli operator;

and - polarization vectors for particles  1 and 2;         

- correlation tensor .

• One-particle density matrices :

In the absence of correlations, factorization takes place :
In the general case :
Cik = Tik - P1i P2k ≠ 0
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• Singlet state ( total spin S = 0 ) – nonfactorizable spin state :

Spin projections are tightly correlated : they are opposite at the choice
of any quantization axis z .

Two-particle density matrix :

Polarization vectors : . 

Correlation tensor :

“Trace” of the correlation tensor : 3ˆˆ
3
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• Triplet states :

• Among these states, the nonfactorizable one is the state with the
zero projection onto the axis z.  For any triplet state  Т=1.

• In case of an arbitrary state of two particles with spin ½ :   
T = Wt – 3Ws ( Ws and Wt – relative weights of the singlet and triplet   
states, respectively ) .

• If  particles 1 and 2 have different relativistic momenta, their polarization 
vectors and correlation tensor components with “left” and “right” indexes 
are specified in the rest frames of particles 1 and 2 – in the coordinate 
axes of the c.m. frame of two particles .

〉0,| tψ
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Two analyzers , selecting the states of particles 1 and 2 with the
polarization vectors and probability of registration of the 
two-particle state by one-particle detectors :

If the polarization vector for particle 1 is measured only, then the 
components of polarization vector for particle 2 :

.

If the one-particle states are unpolarized (                ) ,
spin effects are entirely determined by the correlation tensor 

If, in doing so, correlations are absent ( Tik= 0 ), then at any choice  
of  vector  
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3. Spin correlations at the generation of pairs of 
identical particles with close momenta

• Effect of Bose or Fermi statistics leads not only to the momentum-energy
correlations at low relative momenta ( correlation femtoscopy ), but to the
spin correlations as well .

• Consequence of symmetrization or antisymmetrization of the total wave
function of two identical particles with nonzero spin : (-1)S+L =1
S – total spin, L – orbital momentum in the c.m. frame .

• At the 4-momentum difference q → 0 ,  states with the nonzero orbital
momenta “die out” -- only states with L = 0  and even total spin S 
survive.
Spin ½ -- identical particles are generated in the singlet state only
( protons, Λ particles ) .

• At the momentum difference q ≠ 0, there are also triplet states produced
together with the singlet state. 

• Further we will use the conventional model of one-particle sources 
emitting unpolarized particles, which is the most adequate one for 
relativistic heavy ion collisions . In the framework of this model ,
the triplet states with spin projections +1, 0 and -1 are generated 
with equal probabilities .  
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• Relative weights of the singlet and triplet states

q – difference of  4-momenta, х –difference of 4-coordinates of two
sources,

W(x) – distribution of the 4-coordinate difference for two sources,

- function describing the
momentum-energy correlations of the interacting identical
particles, 

- quantum statistics contribution for the
non-interacting particles,

Bint(q) – contribution of the s-wave final-state interaction .

cos( )qx〈 〉
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• Two-particle spin density matrix

• Correlation tensor

( singlet state )

At sufficiently large , R(q)→1, Bint(q)→0,
Tik→0 ( correlations are absent ). 

• At the emission of unpolarized identical particles with arbitrary
spin j ( assuming that the interaction does not depend on total spin)      

,0|| →q ikikT δ−=

|| q cos( ) 0qx〈 〉 →
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- operator of permutation of spin projections :

For j = ½

• Spin correlations of identical particles at low relative momenta, as well 
as the momentum-energy correlations, depend on the space-time 
parameters of the generation region. The advantage of spin correlations 
is the fact that, in this case, the problem of non-correlated background,
upon which the effects of quantum statistics and final-state interaction
manifest themselves, is eliminated  . Usually this background is 
constructed by the way of mixing different events, which leads to
some uncertainties .

exchP̂

V.L.Lyuboshitz, 
V.V.Lyuboshitz (2004) // 
Proc. 37th & 38th Wint. Sc. 
St. Petersburg, 390-430;

Р.Ледницки, 
В.В.Любошиц, 
В.Л.Любошиц (2003) // ЯФ, 
66, 1007.
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4. Spin correlations and angular correlations in the 
decays of two unstable particles

• Angular correlations in the decays of pairs of unstable particles, 
generated in the same act of collision, are conditioned by the spin
correlations in nonfactorizable quantum states.

• The normalized angular distribution for the flight direction         of 
one of the particles produced in the two-body decay of an unstable 
particle with spin j , or for the direction of normal to the three-body decay
plane, or for the direction of some vector characterizing the multiparticle
decay, has the following structure ( in the rest frame of decaying particle ): 

- elements of the matrix of finite rotations ;
- non-negative parameters -- probabilities of the event that projections 

of spin of the unstable particle onto the vector take the values Λ
in the case of two-body decay Λ is the difference of

helicities ;   ρmm’ – elements of the spin density matrix .
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• The normalized double angular distribution at the decay of two unstable
particles with spins j 1  and j 2 :

- elements of the two-particle spin density matrix .
The vectors and are defined in the rest frames for the first and 

second unstable particle, within the common coordinate axes of the 
c.m. frame for the particle pair .    

• In the presence of spin correlations

• Integration of the double angular distribution over all angles, except the 
angle β between the vectors and , leads to the general formula
for the angular correlation between the flight directions for the products 
of decay :

PL(cos β) – Legendre polynomials

';' 2211 mmmmρ

1n 2n

1n 2n
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• Multipole parameters of decay Clebsh-Jordan
,                        coeffiicients

ρS – relative weight of the states with total spin S   (            )

Racah coefficients

If is a polar vector, then, under space parity conservation, RΛ = R-Λ , 
TL0 = 0 at odd L .

Р. Ледницки, В. В. Любошиц, В. Л. Любошиц (2003) // ЯФ, 66, 1007;
R. Lednicky, V. L. Lyuboshitz, V. V. Lyuboshitz (2004) // Czech. J. Phys. 54, B43

n
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Weak decays of two particles with spin j1 = j2 = ½

, ,

Parity is not conserved:

α1 and α2 – P – odd asymmetry coefficients

Angular distributions :                                        ,

polarization vectors: decay is the spin analyzer for the unstable
particle .

Double angular distribution :

correlation tensor components         
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The polarization parameters and components of the correlation tensor 
can be determined from the angular distribution of products of two 
decays by the method of moments -- as a result of averaging 
combinations of trigonometric functions of flight angles  over the double 
angular distribution :

Here
;

n1x = sin θ1 cos ϕ1 ;  n1y = sin θ1 sin ϕ1 ;   n1z = cos θ1 ;
n2x = sin θ2 cos ϕ2 ;  n2y = sin θ2 cos ϕ2 ;   n2z = cos θ2 ,

where  θ1 and  ϕ1 ,  θ2 and  ϕ2 are the polar and azimuthal angles of 
emission of decay products in the rest frames of the first and second  
particle, respectively – with respect to the unified system of coordinate 
axes of c.m. frame of pair;    

and
are the elements of solid angles of decay product emission .   
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Angular correlations between the directions and at the decays of 
two unstable particles : -

irrespective of the polarization vectors and , which may be equal
to zero

- “ trace” of the correlation tensor .

P – odd asymmetry coefficients : 
;  α = 0.642;                      ;  α = – 0.642 ( CP  invariance )

Angular correlations between the directions of proton flight at the decays 
of two Λ – particles into the channel :

At the decays ,                   , angular correlations between the 
flight directions for the proton and antiproton  :  

1n 2n

1P 2P
).(cos 21nn=β

++→Λ πp−+→Λ πp

−+→Λ πp

−+→Λ πp ++→Λ πp
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P – odd asymmetry coefficient for electron flight at the decay
, averaged over the electron energy spectrum: α = -⅓ . At 

the decay : α = +⅓ . 
Angular correlations between the directions of electron and positron

emission in the decay of muon pair ( μ+ μ− ) :

Angular correlations in generation of pairs of unpolarized identical
particles with spin j  and close momenta ( within the model of one-
particle sources )

contribution of the effect of quantum statistics for
non-interacting particles ;

Bint(q) – contribution of the S-wave final-state interaction

ee+ +
μμ → + ν + ν

ee− −
μμ → + ν + ν

−〉〈 )cos(qx

In case of  muon pair
production in the process
e + e −→ μ + μ − : T = 1
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Taking into account the normalization of d-functions and the parameters
and :

angular correlation is normalized by unity .

In particular, for the above-considered case of decays of two Λ particles 
with close momenta into the channel                        we have :

j = ½ , 

K = ⅓T
“trace” of the correlation tensor             

1ΛR 2ΛR

−+→Λ πp
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5. Spin correlations at the generation of
pairs in multiple processesΛΛ

• Spin and angular correlations at the decays of two Λ particles, 
being identical particles, with taking into account Fermi statistics 
and final-state interaction , were considered previously .

• Let us consider now spin correlations in the 
decays of         pairs . In the framework of the model of inde-
pendent one-particle sources, spin correlations in the        system 
arise only on account of the difference between the interaction in 
the final triplet state ( S = 1 ) and the interaction in the final singlet 
state. At small relative momenta, the s -wave interaction plays the 
dominant role as before, but, contrary to the case of identical 
particles ( ΛΛ ) ,  in the case of non-identical particles (        )  the 
total spin may take both the values S = 1 and S = 0 at the orbital 
momentum L = 0 .  In doing so, the interference effect, connected 
with quantum statistics, is absent .

. 

ΛΛ
ΛΛ

ΛΛ



If the sources emit unpolarized particles, then, in the case under 
consideration, the correlation function describing momentum-
energy correlations has the following structure 
( in the c.m. frame of the         pair ) :

.  

Here            and          -- contributions of interaction of  Λ and      in 
the final triplet ( singlet ) state, which are expressed through the 
amplitudes of scattering of non-identical particles  Λ and      , and 
depend on space-time dimensions of the generation region of

-pair ,

k – momentum of        in the c.m. frame of the pair, v – velocity of 
the pair 

The spin density matrix of the            pair is given by the formula :
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and the components of the correlation tensor are as follows:

• At sufficiently large values of  k , one should expect that :

.

In this case  the angular correlations in the decays 
Λ → p + π – and                        , connected with the final-
state interaction, are absent :

Tik = 0,        T = 0 .
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Dubna, July 6 - 9, 2009    

24

6. Angular correlations in the decays Λ → p + π-

and              and the “mixed phase”+π+→Λ p

• Thus, at sufficiently large relative momenta ( for  k  >> mπ )
one should expect that the angular correlations in the decays 
Λ → p + π– and                   , in the framework of the model of 
one-particle sources are absent. In this case two-particle (and 
multiparticle) sources may be, in principle, the cause of the spin 
correlations. Such a situation may arise, if at the considered 
energy the dynamical trajectory of the system passes through the
so-called “mixed phase”; then the two-particle sources, consisting 
of the free quark and antiquark , start playing a noticeable role . 
For example, the process                    may be discussed .
The CP parity of the fermion-antifermion pair is                       .

• In the case of one-gluon exchange, CP = 1, and then  S = 1, i.e.  
the        pair is generated in the triplet state; in doing so, the 
“trace” of the correlation tensor T = 1 .

+π+→Λ p

ΛΛ→ss
1) 1( +−= SCP

ΛΛ



• Even if the frames of one-gluon exchange are overstepped, 
the quarks s and    , being ultrarelativistic, interact in the 
triplet state ( S = 1 ) .   In so doing,  the primary  CP parity    
CP  = 1, and, due to the CP parity conservation, the        pair 
is also produced in the triplet state. Let us denote the 
contribution of two-quark sources by x . Then at large relative 
momenta T = x > 0   .

• Apart from the two-quark sources, there are also two-gluon 
sources being able to play a comparable role. Analogously 
with the annihilation process                    , in this case the 
“trace” of the correlation tensor is described by the formula   
( the process                        is  implied ) :

,

s

ΛΛ

θββθβ
β

44422
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where β is the velocity of  Λ ( and       )  in the c.m. frame of 
the        pair, θ is the angle between the momenta of one of 
the gluons and  Λ in the c.m. frame . At small β ( β << 1 )  the        

pair is produced in the singlet state ( total spin S = 0, 
T = –3), whereas at   β ≈ 1 – in the triplet state ( S = 1, T = 1) . 
Let us remark that at ultrarelativistic velocities  β ( i.e. at 
extremely large relative momenta of  Λ and      )  both the two-
quark and two-gluon mechanisms lead to the triplet state of 
the         pair ( T = 1 ) . 

V.L.Lyuboshitz, V.V.Lyuboshitz (2010) //  Yad. Fiz. 73 (5), 836  [ Phys. At. Nucl. 73 (5), 805 ]
V.L.Lyuboshitz, V.V.Lyuboshitz (2011) – in NICA White Paper, pp. 164 – 167 

V.L.Lyuboshitz, V.V.Lyuboshitz (2011) //  Proc. of ISHEPP XX, JINR E1,2-2011-121, v.II, pp.54-60

In the general case, the appearance of angular correlations 
in the decays Λ → p + π– and                       with the  
nonzero values of the “trace” of the correlation tensor T at 
large relative momenta of the Λ and        particles may testify 
to  the passage of the system through the  “mixed phase” .

Λ

Λ

++→ πΛ   p

Λ

ΛΛ

ΛΛ

ΛΛ
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7. “Incoherence” inequalities for the correlation tensor
and their violations in two-particle quantum systems

• Incoherent mixture of factorizable spin states of two particles with
spin ½

-- vector Pauli operator ; ,  

Correlation tensor components : i , k = {1,2,3}
→ {x,y,z}

From the restrictions upon the parameters bst ,        ,        ,
the following inequalities for correlation tensor components arise :

|T | = |Txx + Tyy + Tzz | ≤ 1   |Txx + Tyy | ≤ 1   |Txx + Tzz | ≤ 1   |Tyy + Tzz | ≤ 1

σ̂ 1 || )1( ≤sP 1 || )2( ≤tP

)1(
sP

)2(
tP

V. L.Lyuboshitz 
(2000) // Proc. 34th 

Wint. Sc. St. 
Petersburg, 402-424.

R.Lednicky, 
V.L.Lyuboshitz 
(2001) // Phys. Lett. 
B 508, 146.
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These inequalities are more simple than the well-known Bell inequality

where arbitrary unit vectors  ;

which is also valid for 
incoherent mixtures of factorizable states .

In the case of nonfactorizable coherent superpositions of two-particle 
states, the “incoherence” inequalities may be violated .

For the singlet state  all the inequalities are violated :

Txx + Tyy = Txx + Tzz = Tyy + Tzz = -2 ,    T = -3

In the case of nonfactorizable triplet state with zero projection of total 
spin onto the axis z , one of the restrictions is not satisfied :
instead of the inequality |Txx + Tyy| <1 , the equality Txx + Tyy = 2 (>1) 
holds . 

−' ,' , , mnmn
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Quantum character of spin correlations

• Reaction

It follows from the conservation of space parity and angular momentum, 
taking into account the negative internal parity, that in the reaction 

the ( p,3He ) system is produced in the triplet state      
( total spin 1 ), which represents a nonfactorizable superposition of triplet 

states of two  spin -½ particles with total spin projections onto the 
normal to the reaction plane, equaling +1 and -1.

Helicity amplitudes R1(E,θ) = – R-1(E,θ), R0(E,θ)   ( E – total energy, θ –
emission angle in the c.m. frame )

- unit vector along the proton momentum in the c.m. frame .

4 3He p He+π + → +

4 3He p He+π + → +

l

V.V. Lyuboshitz, V. L. Lyuboshitz (2000) // Yad. Fiz. 63, 837; 
V. L. Lyuboshitz, V. V. Lyuboshitz (2005) // Proc. Int. Spin 
Symp. ( Trieste, 2004 ),  P.251 



30

• Or

- unit vector along the normal to the reaction plane .
Polarization vectors

In the system of coordinate axes , the correlation 
tensor component have the form :

Irrespective of the concrete values of helicity amplitudes, one of the 
incoherence inequalities for the correlation tensor is violated :

if |R0|2 – 2|R1|2 > 0 , then Txx + Tyy > 1; 
if |R0|2 – 2|R1|2 < 0 , then Tzz + Tyy > 1 .
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Processes

In the first approximation over the constant          , the process of conversion of 
the electron-positron pair into the muon one (or ) is described by the 
one-photon diagram :

- - - - - - - -

The virtual photon with time-like momentum transfers angular
momentum J=1 and negative parity. The internal parities of μ+ and μ-- are 

opposite: the ( μ+μ-- ) pair is generated in triplet states (total spin S=1 ), with
total angular momentum J=1  and negative space parity .

Helicity amplitudes: 

d- functions

θ and φ – polar and azimuthal angles of flight direction of μ+ with respect to
positron momentum in the c.m. frame of the reaction; Λ’ – difference of 
helicities of μ+ and μ-- , Λ - difference of helicities of e+ and e-- ; E – total 
energy in the c.m. frame .

c
e2

−+ττ

e+

e--

μ+

μ-γ*

,e e+ − + − + −→ μ μ τ τ
V. L. Lyuboshitz, V. V. Lyuboshitz (2009) // 
Yad. Fiz., v.72, p.340. 
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Factorization: 

Parity conservation: 

As follows from the structure of electromagnetic current for pairs (e+ e-- )
and (μ+ μ--) :  

mμ and me - muon and electron masses , βμ - muon velocity  .
Since always E ≥ mμ >> me , the contribution of states of electron and 

positron with antiparallel spins ( equal helicities ) is negligibly small :
r0

(e)(E) ≈ 0, RΛ’0(E) ≈ 0.
At the annihilation of electron and positron being totally polarized in the 

direction parallel to positron momentum in the reaction c.m. frame, the 
(μ+ μ--) system is generated in the triplet state :

- states with
projections of

total spin of (μ+ μ--) 
pair onto the μ +

momentum direc-
tion in the c.m.s.

+1, -1 and 0 
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• If the electron and positron are totally polarized in the direction being
аntiparallel to the positron momentum in the c.m. frame :

• When the primary electron and positron are not polarized, the 
nonfactorizable states are generated with equal
probabilities .

• In the one-photon approximation, the generated muons are unpolarized
but their spins are strongly correlated . Correlation tensor components 
at the choice of axis z along the relative momentum of muons in the 
c.m. frame and axis y – along the normal to the reaction plane :  

The “trace” of the correlation tensor

just as it should hold for any triplet states .

)1()1( |  and | −+ 〉〉 ψψ
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• One of the “incoherence” inequalities  is always violated in the process 
e+ e--→ μ+ μ-- at   θ ≠ 0 :

• Analogous consideration  -- for the process 
(                              ) .

• At very high energies ( βμ → 1,           ) , the nonzero components of the 
correlation tensor are as follows :

1→τβ



35

• At high energies the annihilation processes 

are conditioned not only by electromagnetic 
interaction but also by the weak interaction of neutral currents through 
the virtual Z0 boson :

- - - - - - - +             - - - - - - -

• Interference of the amplitudes  of the purely electromagnetic and 
weak interaction               leads to the charge asymmetry in lepton 
emission and to the space parity violation.  

due to weak interaction

(J = 1, positive CP  parity)   

+e

−e

+e

−e

+μ +μ

−μ −μ

*γ *0 )(Z

1
3

1
3

1
3   and    ,  :states triplet  thein generated     , PDS→ττμμ −+−+

    , −+−+−+−+ ττ→μμ→ eeee
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It follows from the structure of  “left” and  “right” components of neutral 
currents that the nonzero helicity amplitudes of the processes

in the c.m. frame  take the form : 

(                           → turn practically to zero at high energies ) .
Here:                       , where         is the Weinberg angle  ( angle of gauge 

boson mixing ) ;  parameter        → determines the relative contribution  
of weak interaction :                                           

According to the standard model :                               

→ universal Fermi constant of weak interaction, 
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Finally, performing the further analysis, we obtain, in particular, that :  

1) Due to the weak interaction through the Z0 boson, the final       
leptons with opposite charges , generated at the annihilation               
of  the unpolarized electron and positron, acquire the equal      
longitudinal polarizations  and  opposite average helicities
( whereas, if  the weak interaction contribution is neglected,               
the final leptons are correlated  but unpolarized ). 

At the energies below and above the resonance energy,     
the average helicities of the final leptons have different signs :

2) Structure of the correlation tensor of the final leptons is, on the                 

whole, similar to that for the case of purely electromagnetic 

annihilation at high energies .                        
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In doing so,                  as before ;

the expression for           changes , but, as before,      :

where 

Again, one of the incoherence inequalities for the correlation tensor         

components is violated :                            .           
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Process of electron–positron pair production by two photons , 
γ γ → e +e – ( and analogous processes γ γ → μ+ μ– , γ γ → τ+ τ– )

• In the first nonvanishing approximation over the 
electromagnetic constant ( Born approximation ) : if the 
primary photons are unpolarized, then the electron and 
positron are unpolarized as well but their spins are correlated .

• Extending the analysis made previously in the paper  

W.H.McMaster (1961) // Rev. Mod. Phys. 33, N 1, p.8            ,

we obtain the following expressions for the components of the 
correlation tensor of the electron–positron pair,  generated in 
the interaction of unpolarized γ quanta :

V. L. Lyuboshitz, V. V. Lyuboshitz (2010) //       
Proc. of  DSPIN-09, JINR E1,2-2010-13, pp.91-94
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• Here  the axis  z  is aligned along the positron momentum in 
the c.m. frame, the axis  x  lies in the reaction plane, the axis  y  
is directed along the normal to the reaction plane ;       

,        v  – positron velocity in the c.m. frame ;   

• ,        -- positron ( or electron ) energy in the c.m. 

frame ; θ – angle between the positron momentum and the 
momentum of one of the photons in  the c.m. frame .
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• The differential cross section of the process  γ γ → e +e – in 
the c.m. frame  has the form :          

where                     .

• The  “trace” of the correlation tensor  is determined by the 
formula 
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• In doing so, the relative fraction of the triplet states is as 
follows [3] :

,

and the relative fraction of the singlet state ( total spin S = 0 ) 
equals  

.

• At β << 1 we have W t ≈ 0 , W s ≈ 1  .   

• If  β ≈ 1, , then W t ≈ 1 , W s ≈ 0
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• Let us consider the cases θ = 0 and θ = π .  Then, 
according to the formula for        ,  we obtain :

.

• In the ultrarelativistic limit  at θ = 0  and θ = π

.

• According to the above formulas for the correlation tensor 
components,  at θ =  0  and θ = π we have :
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• In doing so, the  “trace”  of the correlation tensor  equals  

.

The relative fraction of the triplet states amounts to

,

and the relative fraction of the singlet state equals  

.

• At nonrelativistic velocities, just as one would expect,

W t ≈ 0 , W s ≈ 1  ,

whereas  at β → 1  we have  :                           .
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In the processes  
we also observe the violation of the “incoherence” inequalities for 
correlation tensor components. 

Indeed,  at θ = 0 and θ = π, in particular,  we obtain :

since   β < 1 .  

Thus, spin correlations of the final leptons in the considered 
processes have the strongly pronounced quantum character .

2
2|  |  |  |      1  ,

1  zz xx zz yyT T T T+ = + = >
+ β

(  ,  )e e+ − + − + −γ γ → γ γ → μ μ γ γ → τ τ
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8. Correlations of polarizations in the system        
of two photons 

Photon mass equals zero ; definition of spin in the rest frame is not 
applicable .
The internal state of a photon is described by a superposition of two 

mutually perpendicular vectors, which are perpendicular to the photon 
momentum in any frame .

Polarization states :

The axis z is directed along the photon momentum, axis x – along the 
vector , axis y – along the vector .

Stokes parameters :

Wi
(+) и Wi

(-) – probabilities of registration of states
(Wi

(+) + Wi
(-) =1, i =1,2,3) ;       - degree of linear polarization;

- degree of circular polarization ( average helicity )  .

V. L. Lyuboshitz, V. V. Lyuboshitz (2005) // EChAYa, 36, No. 7Б, 123
( Proceedings of the Bogolyubov-2004 Conference )
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• System of two photons with momenta :  two systems of
coordinate axes  -- with axis parallel to momentum , and

with axis     parallel to momentum ; the axes are 
mutually parallel and, in doing so, perpendicular to the plane passing
through the photon momenta . 

• Polarization density matrix of the two-photon system is analogous on 
structure to the spin density matrix for two particles with spin ½ :

- Pauli matrices ; - Stokes parameters for photon 1, 
- Stokes parameters for photon 2 ; Tik – correlation “tensor” in Stokes 

space, describing the correlation of polarizations for photons 1 and 2: 

21   , kk
),,( zyx 1k
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-- probabilities of joint registration of
photons 1 and 2 in the states

In the case of unpolarized non-correlated photons                                       .
At the Lorentz transformation from the laboratory frame to the frame moving 

with velocity , the basis unit vectors of polarization for photons 1 and 2
turn around the vectors by the angles θ1 and θ2 being equal to 
the aberration angles; Stokes parameters and correlation tensor components
are relativistic invariants .
At the transition to the c.m. frame of two photons moving with velocity

, the polarization unit vectors for photons 1 and 2 turn around the 
vector          in opposite directions . In the c.m. frame

Examples :
• Decays of pseudoscalar mesons π0 →2γ, η →2γ
In the meson rest frame :

- unit vector along the momentum of one of photons in this frame .
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System of  two γ-quanta is generated in the nonfactorizable state with 
mutually perpendicular polarizations :

Equality means that the helicities of photons 1 and 2 are 
the same ( spinless particle ) .
Quantum character of correlations of polarizations -

the incoherence inequality is violated   .

• Decay Ks
0  → 2γ ( positive CP parity ) ;

System of two γ-quanta is produced in the nonfactorizable state

Taking into account the change of orientation of basis vectors, the
polarization parameters remain invariable in any frame ( e.g., in the 
laboratory frame, where the decaying particle is moving ) .

kiTTTT ikki ≠=−===== at    0   ,1   ,1   ,1   ,0 332211
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)2((1)

i >+≠===−=== TTkiTTTT ikkεε quantum correlations

122 =T



50

9. Correlations of pairs of neutral К mesons

• Internal states of the neutral kaon with definite strangeness:

• Internal states of the neutral kaon with definite CP parity
( neglecting weak effects of CP  nonconservation ) :

CP = +1, short-lived neutral  kaon
decaying into two π mesons ;

CP = -1,  long-lived neutral kaon
decaying into three π mesons .

Analogy with spin ½: projections +½ и -½ onto axis z ;
onto axis x.

In inclusive processes with strangeness conservation, pairs
are generated incoherently. The internal 

state of pair is non-factorizable at given momenta :

)1(    |     ),1(    | 00 −=〉=〉 SKSK

00   и  KK
00   и   LS KK

)2(        ),2(   0000 −== SKKSKK

V. L. Lyuboshitz, V. V. Lyuboshitz (2007) //  Pis’ma v EChAYa, 4, № 5 (141), 654 

)0(   00 =SKK 21    ,  pp
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non-diagonal elements of the density matrix between the states
and are not equal to zero .

As follows from the Bose symmetry with respect to full permutation, CP
parity of the system is always positive ( C = (-1)L ,  
P = (-1)L , L is the orbital momentum ) .

Symmetric internal state of the pair , corresponding  to  even
orbital momenta :

Decomposition into the schemes ( analogue of the 
triplet state with zero projection of total spin onto the axis z ) .

• Antisymmetric internal state, corresponding to  odd orbital momenta :

Decomposition into the scheme ( analogue of the singlet state ) .

00KK

00KK

0000    and   LLSS KKKK

00
LS KK
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At the selection of the pairs of neutral kaons over decays, the structure 
functions ( double inclusive cross sections) are invariant with respect to 
the permutation of momenta and replacement .

- non-diagonal element of the density matrix
of two neutral kaons

• Pair momentum-energy correlations of neutral kaons with small relative 
momenta
In the framework of the conventional model of one-particle sources,

correlation functions , normalized by 1 at large momentum 
differences:

21    and   pp 00
LS KK ⇔

LLSS RR    and   
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- momentum of one of the kaons in the c.m. frame of the kaon pair ,

are relative weights of the pairs ,

(                                      ) .

«Form factors»                                            describe the contribution of Bose
statistics without taking into account final-state interaction ;

S – wave interaction of two mesons

and two mesons ; S – wave interaction between the
meson and meson  .

• If a pair  of non-identical neutral kaons is generated, but the 
states ( or ) are registered over decays, then the two-
particle momentum-energy correlations at small relative momenta have 
the same character as in the case of  ordinary identical bosons ( pions )
with zero spin .
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• For pairs of non-identical states                :

• At the generation of pairs of non-identical neutral kaons
and registration of the state over decays, pair correlations 
are analogous to the correlations of identical fermions with equal 
spin projections ( since in this case the pair has odd 
orbital momentum ) .                               

The difference between the correlation functions for pairs of  identical 
neutral kaons and pairs of non-identical neutral kaons
is conditioned exclusively by the generation of pairs .   
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• Form factors and functions
and contain the information on space-time parameters of the

generation region of neutral kaons and tend to zero  at large relative
momenta :

( due to CP invariance )  ;

are the distributions of distances between
sources of emission of two mesons, two mesons,  a meson 
and a meson, respectively -- in the c.m. frame of the kaon pair .

)2(     ),2(    ),2( 0000 kFkFkF
KKKK )(~    ),( intint kbkb

)(int kB

||2 kq =

0K 0K 0K
0K



56

• Connection of  the contribution of final-state interaction into the pair 
momentum-energy correlations of kaons at small relative momenta with 
the parameters of S -wave low-energy scattering 

Approximate formula :

,                                  -- amplitude of  S -wave elastic

- scattering ; -- amplitude of the reaction
at the momentum of final meson equaling in the c.m.s. of pair

( cross section of the process :

- momentum of the charged kaon in the c.m. frame .

R. Lednicky, V.V. Lyuboshitz, V.L.Lyuboshitz (1998) // Yad. Fiz. 61, 2161
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10. Correlations of pairs of neutral heavy mesons

• Formally, analogous relations are valid also for the neutral heavy 
mesons     ,       and     .  In doing so, the role of strangeness 
conservation is played, respectively, by the conservation of charm and 
beauty in inclusive multiple processes with production of these mesons . 
In these cases the quasistationary states are also states with definite 
CP parity,  neglecting the effects of CP  nonconservation .

For example,                                           ,  CP parity   + 1 ;

, CP  parity  – 1;

• In accordance with the mechanism of mixing a particle with the
respective antiparticle due to weak interaction through the exchange of 
two virtual  W bosons, states with CP parity  ( – 1 )  have the greater 
mass and the larger lifetime than states with CP parity  ( + 1 ) . The 
difference of masses is very insignificant in all the cases, ranging from  
10– 12 MeV for       mesons  up to  10– 8 MeV for          mesons . 
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V. L. Lyuboshitz, V. V. Lyuboshitz (2009) //  Proc. of  Helmholtz Int. School  
“Heavy Quark Physics” ( Dubna, 2008 ),  DESY-PROC-2009-07, pp.299-303
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• Concerning the lifetimes, in the case of       mesons they differ by 600 
times, but for       ,      and        mesons  the respective difference is very 
inconsiderable. In connection with this, it is practically impossible to 
distinguish the states of      ,       and       mesons with definite CP parity 
by the difference in their lifetimes.  These states, in principle, can be 
identified through the purely CP-even and purely CP-odd decay 
channels; however, in fact the branching ratio for such decays is very 
small. For example,   

;

;

;

;

0K
0D 0B 0

sB

0D 0B 0
sB

) 1 (  1062.1)  ( 30 +=⋅=ππ→ −−+ CPDBr

) 1 (  1025.4)  ( 30 +=⋅=→ −−+ CPKKDBr

) 1 (  102.1    )   /   ( 300 +=⋅<π→ − CPJBBr s Ψ

) 1  (  109    )   /   ( 400 −=⋅=→ − CPKJBBr SΨ
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Just as in the case of neutral K mesons, the correlation functions for the 
pairs of states of neutral  D, B  and       mesons with the same CP parity  
(                )  and  for  the pairs of states with different CP parity (      )  do 
not coincide, and the difference between them is conditioned exclusively 
by the production of pairs          ,            and           , respectively. In 
particular, for          mesons the following relation holds:

;

here                is the relative fraction of generated pairs           ,

,

,

,

where                                        is the amplitude of  S-wave         – scattering,
k = | k | ,  r = | r | .  Let us remark that the       and       mesons do not have
charged partners  ( the isotopic spin equals zero )  and, on account of that,
in the given case the transition  similar to                   is  absent. 
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11. Summary

So, the study of pair correlations of internal quantum 
numbers is very important for understanding the 
dynamics of various physical processes – especially   
the processes of multiple production of particles .
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