Pion-Nucleus Microscopic Optical Potential at Intermediate Energies and In-Medium Effect on the Elementary πN Scattering Amplitude

V.K.Lukyanov² Joint Institute for Nuclear Research, Dubna, Russia

ISHEPP XXI, September 10-15, 2012, Dubna, Russia

²*Presentation of two works (titles see below)*

V.K.Lukyanov³ Joint Institute for Nuclear Research, Dubna, Russia

 ANALYSIS OF THE PION-NUCLEUS ELASTIC SCATTERING USING THE MICROSCOPIC OPTICAL POTENTIAL

V.K. Lukyanov, E.V. Zemlyanaya, K.V. Lukyanov,

Joint Institute for Nuclear Research, Dubna, Russia

Ali El Lithi, Ibrahim Abdulmagead,

Cairo University, Giza, Cairo, Egypt

B. Slowinski,

NCNR, Otwock-Swierk, Poland

• A MODELING OF THE PION-NUCLEUS MICROSCOPIC OPTICAL POTENTIAL AT ENERGIES OF 33-RESONANCE AND IN-MEDIUM EFFECT ON THE PION-NUCLEON AMPLITUDE OF SCATTERING V.K. Lukyanov, E.V. Zemlyanaya, K.V. Lukyanov, E.I. Zhabitskaya, M.V. Zhabitsky

Joint Institute for Nuclear Research, Dubna, Russia 📢 🛓 📢 🚊 🖉 🔍 🖉

V.K.Lukyanov⁴ Joint Institute for Nuclear Research, Dubna, Russia

Motivation

- There is a great number of papers on pion-nucleus scattering at different energies
- In theoretical study two approaches are usually employed: *First*, microscopic Kisslinger potential based on s, p, d- phases of the πN amplitudes having six and more parameters obtained from analysis of πN scattering data. *Second*, the Glauber high-energy approximation (HEA) that uses analytic form of the πN amplitude inherent in high energy scattering.
- Here we utilize our HEA-based microscopic optical potential⁵ for calculation of π-nucleus elastic scattering.
- The aim of our study is an explanation of experimental data in the region of (3 3)-resonance energies and estimation of the "in-medium" effect on the elementary pion-nucleon amplitude.

⁵V.Lukyanov *et al.* Phys.At.Nucl.**73**(2010)1443

V.K.Lukyanov⁶ Joint Institute for Nuclear Research, Dubna, Russia

(日) (同) (三) (

Summary

How and what we deal with

- Our microscopic optical potential (OP) is constructed as an optical limit of a Glauber theory. It is defined by known nuclear density distributions and by the elementary πN -amplitude of scattering.
- The πN-amplitude depends on three parameters: total cross section σ, the ratio α = ℜe f(0)/ℑm f(0), and the slope parameter β. For free πN amplitudes they are obtained from πN scattering data, while for the "in-medium"πN amplitudes one should analyze the data on πA scattering.
- The established best-fit "in-medium" πN parameters are compared with the corresponding parameters of the "free" πN scattering amplitudes.

V.K.Lukyanov⁷ Joint Institute for Nuclear Research, Dubna, Russia

Basic equations

The cross sections are calculated by solving the Klein-Gordon equation in its form at conditions $E \gg U$

$$\left(\Delta + k^2\right)\psi(\vec{r}) = 2\bar{\mu}U(r)\psi(\vec{r}), \quad U(r) = U^H(r) + U_C(r)$$

Here k is relativistic momentum of pion in c.m. system,

$$k=rac{M_Ak^{ ext{lab}}}{\sqrt{(M_A+m_\pi)^2+2M_AT^{ ext{lab}}}}, \quad k^{ ext{lab}}=\sqrt{T^{ ext{lab}}\left(T^{ ext{lab}}+2m_\pi
ight)},$$

and $\bar{\mu} = \frac{EM_A}{E + M_A}$ – relativistic reduced mass, $E = \sqrt{k^2 + m_\pi^2}$ – total energy, m_π and M_A – the pion and nucleus masses.

V.K.Lukyanov⁸ Joint Institute for Nuclear Research, Dubna, Russia

Microscopic OP based on $f_{\pi p}$ and $f_{\pi p}$ amplitudes

HEA-based microscopic OP

$$U^{H} = -\frac{\hbar c \beta_{c}}{(2\pi)^{2}} \sum_{N=p,n} \sigma_{\pi N} \left(\alpha_{\pi N} + i \right) \cdot \int_{0}^{\infty} dq \, q^{2} j_{0}(qr) \rho_{N}(q) f_{\pi N}(q),$$

where
$$\beta_c = k/E$$
; $f_{\pi N}(q) = \exp[\frac{-\beta_{\pi N}q^2}{2}]$ - formfactor of πN -amplitude; $\rho(q)$ - formfactor of a nuclear density distribution.

Nuclear density is taken as the symmetrized Fermi-function:

$$\rho_{SF}(r) = \rho_0 \frac{\sinh{(R/a)}}{\cosh{(R/a)} + \cosh{(r/a)}}, \ \rho_0 = \frac{A}{1.25\pi R^3} \left[1 + \left(\frac{\pi a}{R}\right)^2 \right]^{-1}$$

Parameters R and a known from electron-nucleus scattering data.

V.K.Lukyanov⁹ Joint Institute for Nuclear Research, Dubna, Russia

Fig.1. πA calculations with 6 parameters of free $f_{\pi p(n)}$ amplitudes taken from Nucl.Ph.**B38** (1972)221. Here $\chi^2(\pi^-)=4.67$ to 85.32; $\chi^2(\pi^+)=24.05$ to 173.33.

V.K.Lukyanov¹⁰ Joint Institute for Nuclear Research, Dubna, Russia

Microscopic OP based on $f_{\pi N}$ amplitude

For pion scattering on nuclei with Z=A-Z, the charge-independent principle $f_{\pi^{\pm}p} = f_{\pi^{\pm}n}$ makes available to use only 3 <u>tabulated</u> parameters at different energies

$$\sigma = \frac{1}{2} [\sigma_{\pi^+ \rho} + \sigma_{\pi^- \rho}], \quad \alpha = \frac{1}{2} [\alpha_{\pi^+ \rho} + \alpha_{\pi^- \rho}], \quad \beta = \frac{1}{2} [\beta_{\pi^+ \rho} + \beta_{\pi^- \rho}]$$

Thus the microscopic OP takes the simple shape

$$U^{H} = -\frac{\hbar c \beta_{c}}{(2\pi)^{2}} \sigma \left(\alpha + i\right) \cdot \int_{0}^{\infty} dq \, q^{2} j_{0}(qr) \rho(q) f_{\pi N}(q), \quad f_{\pi N}(q) = e^{\frac{-\beta q^{2}}{2}}$$

V.K.Lukyanov¹¹ Joint Institute for Nuclear Research, Dubna, Russia

Pion-nucleus 2-parameters fit; $T_{lab} = 291 MeV$

Fig.2. Solid: Fit of 2 from 3 parameters of $f_{\pi N}$ "in-medium" amplitude; Dashed: calculations with "free" $f_{\pi N}$.

V.K.Lukyanov¹² Joint Institute for Nuclear Research, Dubna, Russia

(I)

Summary

2D χ^2 -plots of fitted "in-medium" parameters

Fig.3. Fit of "in-medium" parameters σ and α of $f_{\pi N}$ amplitude at fixed β =0.434 and T_{lab} =291 MeV.

V.K.Lukyanov¹³ Joint Institute for Nuclear Research, Dubna, Russia

A B A A B A

Summary

2D χ^2 -plots of fitted "in-medium" parameters

Fig.4. Fit of "in-medium" parameters σ and α of $f_{\pi N}$ amplitude at fixed β =0.434 and T_{lab} =291 MeV.

V.K.Lukyanov¹⁴ Joint Institute for Nuclear Research, Dubna, Russia

The σ and α best-fit πN parameters at T_{lab} =291 MeV

reaction	T _{lab}	σ	α	β	χ^2/k
π^- + ²⁸ Si	291	4.81	-0.88	0.434	3.558
π^+ + ²⁸ Si		5.55	-0.64	0.434	2.305
π^- + ⁵⁸ Ni		4.09	-1.02	0.434	4.255
$\pi^++{}^{58}Ni$		5.43	-0.68	0.434	1.731
$\pi^{-}+^{208}Pb$		4.23	-0.92	0.434	6.947
$\pi^+ + ^{208} Pb$		4.04	-0.56	0.434	3.939
average		4.69	-0.783	0.434	3.789
free $\pi + N$		4.76	-0.95	0.434	

1. Fit at 291 MeV with fixed β yields two ''in-medium'' parameters σ and α close to ''free'' one.

- 2. One sees overall negative α .
- 3. One should analyze the data at lower energies and by fitting 3

```
"in-medium" parameters \sigma, \alpha, and \beta.
```

V.K.Lukyanov¹⁵ Joint Institute for Nuclear Research, Dubna, Russia

Many parameter fitting technique

Three parameters of the πN scattering amplitude are obtained by fitting to the experimental πA differential cross sections:

- σ , total cross section πN ,
- α , ratio of real to imaginary part of the forward πN amplitude,
- β , the slope parameter.

We minimize the function

$$\chi^{2} = f(\sigma, \alpha, \beta) = \sum_{i} \frac{(y_{i} - \hat{y}_{i}(\sigma, \alpha, \beta))^{2}}{s_{i}^{2}},$$

where $y_i = \log \frac{d\sigma}{d\Omega}$ and $\hat{y}_i = \log \frac{d\sigma}{d\Omega}(\sigma, \alpha, \beta)$ are, respectively, experimental and theoretical differential cross sections, s_i – experimantal errors. The asynchronous differential evolution technique¹⁶ is applied

¹⁶E.Zhabitskaya, M.Zhabitsky. Springer Lect.Notes Comp.Sci.**7125**(2012)328

V.K.Lukyanov¹⁷ Joint Institute for Nuclear Research, Dubna, Russia

Pion-nucleus elastic scattering; $T_{lab} = 291 MeV$

Pion-nucleus elastic scattering; $T_{lab} = 162 MeV$

Fig.6. Fit to the data²⁰ at 162 MeV. Agreement is comparable with that obtained by using Kisslinger potential.

²⁰Olmer et al. Phys.Rev.C21(1980)254

V.K.Lukyanov²¹ Joint Institute for Nuclear Research, Dubna, Russia

Pion-nucleus elastic scattering; $T_{lab} = 130$ and 180 MeV

Model

reaction	T _{lab}	χ^2/k	σ	α	β	
π^- + ²⁸ Si	130	2.1	$7.08{\pm}0.16$	0.87±0.05	$0.81{\pm}0.05$	
π^+ + ²⁸ Si		5.5	$9.61{\pm}0.14$	$0.04{\pm}0.02$	$0.85{\pm}0.04$	
π^- + ⁴⁰ Ca		3.9	$6.97{\pm}0.11$	$0.89{\pm}0.01$	0.87±0.03	
π^+ + ⁴⁰ Ca		13.3	$8.58{\pm}0.08$	$0.11{\pm}0.01$	$0.76 {\pm} 0.02$	
π^- + ²⁸ Si	162	3.5	$11.02{\pm}0.1$	0.04±0.02	0.39±0.02	
π^+ + ²⁸ Si		6.7	8.48±0.06	$0.71{\pm}0.01$	$0.71 {\pm} 0.01$	
π^- + ⁵⁸ Ni		10.7	$10.95{\pm}0.1$	$-0.146 {\pm} 0.01$	$1.08{\pm}0.02$	
$\pi^++{}^{58}Ni$		7.5	9.28±0.04	$-0.444{\pm}0.01$	$0.77 {\pm} 0.01$	
π^- + ²⁰⁸ Pb		3.7	9.62±0.09	$0.36{\pm}0.01$	$1.02{\pm}0.01$	
π^+ + ²⁰⁸ Pb		10.3	$6.60 {\pm} 0.03$	$0.61{\pm}0.01$	$0.01{\pm}0.01$	
π^- + ²⁸ Si	180	10.5	$10.03 {\pm} 0.06$	0.33±0.01	$0.266{\pm}0.01$	
π^+ + ²⁸ Si		12.1	$10.24{\pm}0.07$	$0.31{\pm}0.01$	$0.323{\pm}0.01$	
π^- + ⁴⁰ Ca		3.3	$9.44{\pm}0.11$	0.25±0.02	$0.29{\pm}0.01$	
π^+ + ⁴⁰ Ca		4.2	$5.78 {\pm} 0.07$	$1.08{\pm}0.02$	$0.70{\pm}0.02$	
π^- + ²⁸ Si	291	3.7	4.17±0.08	1.08±0.02	0.04±0.01	
π^+ + ²⁸ Si		3.5	$3.71 {\pm} 0.07$	$1.63{\pm}0.01$	$0.32{\pm}0.01$	
π^- + ⁵⁸ Ni		3.8	4.78±0.08	-0.85±0.02	$0.28{\pm}0.02$	
$\pi^++{}^{58}Ni$		2.6	$5.63{\pm}0.15$	-0.66±0.02	$0.36{\pm}0.01$	
π^- + ²⁰⁸ Pb		4.1	$4.50 {\pm} 0.07$	$-1.06 {\pm} 0.02$	$0.666 {\pm} 0.02$	
π^+ + ²⁰⁸ Pb		3.0	$5.56{\pm}0.15$	-0.45±0.02	0.588±0.02	3

V.K.Lukyanov²⁵ Joint Institute for Nuclear Research, Dubna, Russia

In-medium effect on σ^{eff} of πN amplitude

Yellow: parameters of "free" $\pi^{\pm}N$ -amplitude from Nucl.Phys.B27(1971)593. Blue: the best fit $\sigma^{\text{eff}} = (\sigma_{\pi^+} + \sigma_{\pi^-})/2$.

V.K.Lukyanov²⁶ Joint Institute for Nuclear Research, Dubna, Russia

In-medium effect on α^{eff} of πN amplitude

Yellow: parameters of "free" $\pi^{\pm}N$ -amplitude from Nucl.Phys.B27(1971)593. Blue: the best fit $\alpha^{eff} = (\alpha_{\pi^+} + \alpha_{\pi^-})/2$.

V.K.Lukyanov²⁷ Joint Institute for Nuclear Research, Dubna, Russia

In-medium effect on β^{eff} of πN amplitude

Yellow: parameters of "free" $\pi^{\pm}N$ -amplitude from Nucl.Phys.B27(1971)593. Blue: the best fit $\beta^{eff} = (\beta_{\pi^+} + \beta_{\pi^-})/2$.

V.K.Lukyanov²⁸ Joint Institute for Nuclear Research, Dubna, Russia

- 34

In-medium effect on πN scattering

- Bell-like forms of σ^{free} and $\sigma^{eff}(T^{lab})$ have maximum at the same T^{lab} .
- \bullet "Blue" domain $\sigma^{\it eff}$ is located below the "yellow" $\sigma^{\it free}$ region.
- "In-medium" α^{eff} : refraction increases at energy $T^{lab} > T^{lab}_{res} \simeq 170$ MeV.
- "Blue" and "yellow" regions become closer at $T^{lab} > 250$ MeV.

V.K.Lukyanov²⁹ Joint Institute for Nuclear Research, Dubna, Russia

Problem of large angles. The case $\pi^+ + {}^{28}Si$ at 180 MeV:

- Left panel: Agreement with experiment is improved as we remove a few experimental points (green) at large angles.
- Right panel³⁰: Gaussian form $f_{\pi}(q) = \exp[\frac{-\beta q^2}{2}]$ is not realistic for large angles.

V.K.Lukyanov³¹ Joint Institute for Nuclear Research, Dubna, Russia

Ambiguity problem. The case $\pi^- + {}^{28}Si$ at 130 MeV:

Left panel: two minima exist on the (α, σ)-plane (β = 0.9).

• <u>Right panel</u>: Two sets of parameters provide almost the same agreement with experimental data. Additional information (total cross section) is needed to make a choice.

V.K.Lukyanov³² Joint Institute for Nuclear Research, Dubna, Russia

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Summary

- We show that the HEA-based three-parametric microscopic OP provides a reasonable agreement with experimental data of pion-nucleus elastic scattering at intermediate energies between 130 and 290 MeV.
- Comparison of σ^{free} and σ^{eff} shows that, at (3 3)-resonance energies, the πN -interaction in nuclear matter is weaker than in the case of free πN collisions.
- Behavior of parameter α indicates that the refraction increases at energies more than $T_{res}^{lab} \simeq 170$ MeV.
- Total cross section data are desirable to resolve the ambiguity problem.

V.K.Lukyanov³³ Joint Institute for Nuclear Research, Dubna, Russia

Thank you for your attention!

V.K.Lukyanov³⁴ Joint Institute for Nuclear Research, Dubna, Russia