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Introduction

The top quark plays a special role in Standard Model and it is an
object of intensive research at LHC. Being a short-living particle
(due to the open channels with W-boson on mass shell), it may be
considered on an equal footing with ordinary hadron resonances.
The dressed propagator can be obtained as a result of Dyson
summation of self-energy insertions or, equivalently, by solving the
Dyson–Schwinger equation. As for top quark, its vertex violates
parity, so γ5 takes part in this process, and it leads to nonstandard
form of resonance factor, as we shall see below.



The form of fermion resonance with parity violation was discussed
earlier. In particular, in A.E. Kaloshin, V.P. Lomov, Phys. Atom.
Nucl. 69, 541 (2006) were written general formulas for dressed
propagator with the use of the off-shell basis. The paper B.A.
Kniehl, A. Sirlin, Phys.Rev. D77, 116012 (2008) was devoted to
extension of the concept of pole mass and width to the case of the
parity violation. The obtained dressed fermion propagator was
written in a boson-like form without separation of the positive and
negative energy poles. It is difficult to compare this general
expression with the standard Breit–Wigner form, in particular to
recognize there the on-shell decay width.



Standard Breit–Wigner formula in QFT

To obtain Breit–Wigner-like formula in QFT one needs to solve the
Dyson–Schwinger equation for the dressed propagator,

G = G0 + G0ΣG , or G−1 = G−1
0 − Σ. (1)

For bosons one has

G0 =
1

m2
0 − s − i ε

and G =
1

m2
0 − s − Σ(s)

∼ 1
m2 − s − i Γm

,

if Σ has imaginary part, the dressed propagator G should be
compared with relativistic Breit–Wigner formula for renormalization.
For fermions all is similar:

G0 =
1

p̂ −m0
and G =

1
p̂ −m0 − Σ(p)

,

but to make this procedure more transparent, it is convenient to
pass to off-shell projection operators.



Let’s define off-shell projection operators as follows:

Λ± =
1
2

(
1± p̂

W

)
, (2)

where W =
√

p2 is invariant mass or rest-frame energy.
In this basis dressing looks like

G0 =
1

p̂ −m0
= Λ+ 1

W −m0
+ Λ−

1
−W −m0

⇒

⇒ G = Λ+ 1
W −m0 − Σ1(W )

+ Λ−
1

−W −m0 − Σ2(W )
, (3)

where the self-energy is also decomposed in this basis

Σ(p) = A(p2) + p̂B(p2) ≡ Λ+Σ1(W ) + Λ−Σ2(W ).

The positive energy pole should be compared with Breit–Wigner
formula

1
W −m0 − Σ1(W )

∼ 1
W −m + i Γ/2

. (4)



Fermion Resonance with Parity Violation

In case of parity violation the projection basis (2) must be
supplemented by elements with γ5, it is handy to choose the basis
as

P1 = Λ+, P2 = Λ−, P3 = Λ+γ5, P4 = Λ+γ5. (5)

Now the decomposition of a self-energy or a propagator has four
terms

S =
4∑

M=1

SMPM , (6)

where coefficients SM are followed by obvious symmetry properties

S2(W ) = S1(−W ), S4(W ) = S3(−W ).



With the use of decomposition (6), the Dyson–Schwinger equation
(1) is reduced to the set of equations for scalar coefficients

SM = (S0)M − ΣM , M = 1, . . . , 4. (7)

Considering the self-energy Σ as a known value, we obtain the
dressed propagator

G =
4∑

M=1

GMPM ,

where the coefficients GM are

G1 =
S2

∆
, G2 =

S1

∆
, G3 = −S3

∆
, G4 = −S4

∆
, (8)

and ∆ = S1S2 − S3S4.



In spite of simple answer (7), it is inconvenient because the positive
and negative energy poles are not separated, compare with formula

G = Λ+ 1
W −m0 − Σ1(W )

+ Λ−
1

−W −m0 − Σ2(W )
.

We want to obtain the analog of this formula for the parity
non-conservation case.



Spectral Representation of Propagator

In order to obtain the analog of above mentioned formula in case of
parity violation, we use the spectral representation of inverse
propagator

S = λ1Π1 + λ2Π2, (9)

where Πk are projectors, satisfying the eigenstate problem

SΠk = λkΠk . (10)

Let’s write the dressed propagator S(p) as

S =
4∑

M=1

SMPM ,

with arbitrary coefficients and will look for the matrix Π in the
same form with coefficients aM .



It is easy to find that eigenvalues λi are roots of the equation

λ2 − λ(S1 + S2) + (S1S2 − S3S4) = 0, (11)

and solution of (10) is

Πi = P1ai
1 + P2ai

2 −
S3

S1 − λi
ai
2P3 −

S4

S2 − λi
ai
1P4

with arbitrary coefficients a1, a2.
In order (10) to be a projector, Π2 = Π, we need only one
additional condition

a2 = 1− a1.

After it the orthogonality property Π1Π2 = Π2Π1 = 0 defines a1
coefficient

a1
1 =

S2 − λ1

λ2 − λ1
, a2

1 = −S2 − λ2

λ2 − λ1
.



As result we have the projectors

Π1 =
1

λ2 − λ1

(
(S2 − λ1)P1 + (S1 − λ1)P2 − S3P3 − S4P4

)
,

Π2 =
1

λ1 − λ2

(
(S2 − λ2)P1 + (S1 − λ2)P2 − S3P3 − S4P4

)
,

(12)

with desired properties:
SΠk = λkΠk ,
Π2

k = Πk ,
Π1Π2 = Π2Π1 = 0,
Π1 + Π2 = 1.



The dressed propagator G (p) is obtained by reversing of equation
(9)

G =
1
λ1

Π1 +
1
λ2

Π2. (13)

The determinant ∆(W ) of S is

∆(W ) = S1S2− S3S4 = (W −m0−Σ1)(−W −m0−Σ2)−Σ3Σ4,

where Σi (W ) are self-energy components in the basis. Free
propagator has poles at points W = m0 and W = −m0, the
dressed one has them at W = m and W = −m. On the other
hand, ∆(W ) is equal to product of eigenvalues

∆(W ) = λ1(W )λ2(W ). (14)



Top Quark as Resonance

Consider the dressing of top quark in SM. The main one-loop
contribution to self-energy arises from Wb intermediate state

Σ(p) = − i g2|Vtb|2
∫

d4k
(2π)4γ

µ(1− γ5)
p̂ − k̂ + mb

(p − k)2 −m2
b
×

× γν(1− γ5)
gµν − kµkν/m2

W
k2 −m2

W
, (15)

and generates only kinetic term

Σ(p) = p̂(1− γ5)Σ0(W 2). (16)

Its decomposition in the basis (5) has the following coefficients:

Σ1 = W Σ0(W 2), Σ2 = −W Σ0, Σ3 = −W Σ0, Σ4 = W Σ0.



As a preliminary, let us forget about renormalization of self-energy
and calculate the eigenvalues

λ1,2 = −m ±W
√

1− 2Σ0(W 2).

In analogy with OMS scheme let’s subtract the real part of
self-energy at resonance point

λ1,2 = −m ±W
√

1− 2
(
Σ0(W 2)− ReΣ0(m2)

)
.

As a result we have rather unusual resonance factor
1

λ1(W )
=

1

W

√
1 + i

Γ

m
−m

, (17)

which only at Γ/m� 1 returns to standard Breit–Wigner form,

1
λ1(W )

' 1

W −m + iW
Γ

2m

at Γ/m� 1.



Let’s suppose that self-energy does not have imaginary part. We
put:

Σ1 has zero of second order at W = m
Σ3 has zeroes at W = m and W = −m.

The Σ2 and Σ4 are defined by substitution W → −W , so the OMS
renormalization in this case is

Σr
1(W ) = Σ1(W )− Σ1(m)− Σ′1(m)(W −m),

Σr
2(W ) = Σr

1(−W ),

Σr
3(W ) = −W

(
Σ0(W 2)− Σ0(m2)

)
,

Σr
4(W ) = Σr

3(−W ).



Eigenvalues in OMS scheme are

λ1,2(W ) = −mK ±WK
√

d , where d = 1− 2Σ̃/K (18)

and K = 1 + 2m2Σ′0(m2), Σ̃ = Σ0(W 2)− Σ0(m2).
Let us write down the eigenvalues in vicinity of W = m

λ1(W ) = W −m + o(W −m),

λ2(W ) = −2mK − (W −m) + o(W −m),

and in vicinity of W = −m

λ1(W ) = −2mK − (−W −m) + o(−W −m),

λ2(W ) = −W −m + o(−W −m).



Projectors on eigenstates have the form

Π1 = P1

√
d + (1− Σ̃/K )

2
√

d
+ P2

√
d − (1− Σ̃/K )

2
√

d
− P3

Σ̃/K
2
√

d
+ P4

Σ̃/K
2
√

d
,

Π2 = P1

√
d − (1− Σ̃/K )

2
√

d
+ P2

√
d + (1− Σ̃/K )

2
√

d
+ P3

Σ̃/K
2
√

d
− P4

Σ̃/K
2
√

d
,

(19)

and dressed propagator is

G (p) =
m0 + p̂ − p̂(1 + γ5)Σ̃/K

K (W 2d −m2
0)

.



The expressions for eigenvalues and projectors may be simplified in
vicinity of W 2 = m2, where Σ̃(W )� 1 and we take into account
only linear in Σ̃ terms

λ1,2(W ) = K (−m ±W )∓W Σ̃(W 2),

Π1 = P1 − P3
Σ̃

2K
+ P4

Σ̃

2K
= Λ+ − Σ̃(W 2)

2K
p̂γ5

W
,

Π2 = P2 + P3
Σ̃

2K
− P4

Σ̃

2K
= Λ− +

Σ̃(W 2)

2K
p̂γ5

W
.



Let’s consider the case when the self-energy Σ(W ) acquire the
imaginary part. The formulas for eigenvalues and projectors, (18)
and (19), remain the same, but in this case

Σ̃(W 2) = Σ0(W 2)−ReΣ0(m2), and K = 1+2m2(ReΣ0)′(m2).

Resonance factor 1/λ1 in vicinity of W = m practically coincides
with naive expression (17)

1
λ1(W )

=
1

K
(
W
√

1− 2Σ̃/K −m
) ≈ 1

K
(
W
√

1 + i Γ(W )
KW −m

) ,
(20)

if to introduce the energy-dependent width
Γ(W ) = −2W ImΣ0(W 2).



At small Γ resonance factor returns to standard form

1
λ1(W )

' 1
W −m + i Γ(W )/2

at W ' m, Γ/m� 1.

Using the same approximations in projectors, we can write down a
parametrization of dressed propagator in vicinity of W = m:

G =
1

W −m + i Γ(W )/2

(
P1 + i

Γ(W )

4KW 2 p̂γ5
)

+

+
1

−2mK − (W −m)− i Γ(W )/2

(
P2 − i

Γ(W )

4KW 2 p̂γ5
)
. (21)



Pole Scheme and Spectral Representation

The pole renormalization scheme for fermion with parity
non-conservation have been considered in detail in work B.A.
Kniehl, A. Sirlin, Phys.Rev. D77, 116012 (2008). We will consider
the pole scheme on the base of spectral representation. In this case
it is sufficient to renormalize the single pole contribution 1/λ1(W ).
It simplifies essentially the algebraic procedure and clarifies some
aspects.
The inverse propagator has the form

S(p) = p̂ −m0 − Σ(p) =

= p̂ −m0 −
(
A(p2) + p̂B(p2) + C (p2)γ5 + p̂γ5D(p2)

)
. (22)

In CP-symmetric theory C (p2) = 0.



In terms of scalar functions the eigenvalues and corresponding
projectors (12) have the form

λ1(W ) = −m0 − A(W 2) + WR(W 2),

λ2(W ) = λ1(−W ),

Π1(W ) =
1
2

[
1− γ5 C (W 2)

WR(W 2)
+

p̂
W

(1− B(W 2)

R(W 2)
− γ5 D(W 2)

R(W 2)

)]
,

Π2 = Π1(−W ),

where we have introduced the notation

R(W 2) =

√(
1− B(W 2)

)2 − D2(W 2) + C 2(W 2)/W 2.



Let’s λ1(W1) = 0, where W1 = Mp − i Γp/2:

−m0 − A(W 2
1 ) + W1R(W 2

1 ) = 0.

Real part of this equality allows to get rid of m0 in dressed
propagator

S(p) = p̂ −
(
Ã(p2) + p̂B(p2) + γ5C (p2) + p̂γ5D(p2)

)
,

Ã(p2) = A(p2)− A(W 2
1 ) +

(
W1R(W 2

1 )
)
.

The imaginary part of (23),

Im
(
− A(W 2

1 ) + W1R(W 2
1 )
)

= 0

gives relation between Γp and self-energy at pole point. In
particular, in case of parity conservation it reduces to the obvious
relation

Im
(
W1−

(
A(W 2

1 ) + W1B(W 2
1 )
))

= 0, or
Γp

2
= − ImΣ1(W 2

1 ).



Let’s introduce wave function renormalization constants connecting
bare and renormalized fields

Ψ = Z 1/2Ψr, Ψ̄ = Ψ̄rZ̄ 1/2.

In case of parity violation Z 1/2, Z̄ 1/2 are matrices

Z 1/2 = α + βγ5, Z̄ 1/2 = ᾱ + β̄γ5.

Renormalized inverse propagator

S r(p) = (ᾱ + β̄γ5)
[
p̂ −

(
Ã + p̂B + γ5C + p̂γ5D

)]
(α + βγ5) =

= I
[
− Ã(αᾱ + β̄β)− C (ᾱβ + β̄α)

]
+

+ p̂
[
(1− B)(αᾱ− ββ̄)− D(ᾱβ − β̄α)

]
+

+ γ5[− C (ᾱα + β̄β)− Ã(ᾱβ + β̄α)
]
+

+ p̂γ5[− D(ᾱα− β̄β) + (1− B)(ᾱβ − β̄α)
] (23)

allows to obtain the renormalized components of self-energy.



Looking at first term in spectral representation, we see that
renormalization is divided into two parts: renormalization of
eigenvalue and projector.
For stable fermion there is a physical requirement for projector.
The projector at point W = m has form

Πr
1(m) =

1
2

[
1− γ5c +

p̂
m
(
b − γ5d

)]
,

where parameters b, d and c are related by b2 − d2 + c2 = 1.
However, if c 6= 0, d 6= 0 then Πr

1(m) do not commutate with spin
projector, what leads to spin flip for fermion on mass shell.
Therefore there are requirements for renormalization of a stable
fermion:

C r(m2) = 0, Dr(m2) = 0. (24)



For unstable fermion, when pole is at point W1 = Mp − i Γp/2,
there is some arbitrariness. The simplest generalization of (24)
consists in:

C r(W 2
1 ) = 0, Dr(W 2

1 ) = 0. (25)

The same relations arise from a principle, suggested in B.A. Kniehl,
A. Sirlin, Phys.Rev. D77, 116012 (2008): the chiral components
should have poles with unit absolute value of residue.



A few words about the relation between renormalization constants
Z 1/2, Z̄ 1/2. The pseudo-hermiticity condition

Z̄ 1/2 = γ0(Z 1/2)†γ0, (26)

is traditionally used in literature, which is reduced to ᾱ = α∗,
β̄ = −β∗. However, as it was noted in D. Espriu, J. Manzano, P.
Talavera, Phys. Rev. D66, 076002 (2002), one should refused from
this condition, if self-energy has absorptive parts. The same is seen
from our renormalized propagator (23).



Assuming pseudo-hermiticity we calculate Dr(W 2) thus:

Dr(W 2) = |α|2
{

D(W 2)
(
1 +
|β|2

|α|2
)
−

−
(
1− B(W 2)

)(β
α

+
β∗

α∗

)}
. (27)

Because D(W 2) and B(W 2) contain physically different
contributions we cannot provide the condition Dr(W 2

1 ) = 0 for
complex self-energy. So, the pseudo-hermiticity condition seems to
be too restrictive for parity violating theory.



Let’s consider below the case of CP conservative theory when
component C (p2) = 0. In order to avoid CP violation under
renormalization it is necessary to require (see (23))

ᾱβ + β̄α = 0. (28)

The pseudo-hermiticity condition (26) leads to (28) in case of real
α, β (stable fermion). However, for resonance one have to refuse
from pseudo-hermiticity, (26).



Putting into account the condition (28) the renormalized inverse
propagator becomes

S r = αᾱ
{
− Ã(W 2)(1− x2)+

+ p̂
[
(1− B(W 2))(1 + x2)− D(W 2)2x

]
+

+ p̂γ5
[
− D(W 2)(1 + x2) + (1− B(W 2))2x

]}
,

(29)

where α, ᾱ and x = β/α are complex numbers.
The condition at pole Dr(W 2

1 ) = 0 defines

x ≡ β

α
=

1− B1 − R1

D1
,

where B1 = B(W 2
1 ), D1 = D(W 2

1 ), R1 = R(W 2
1 ).



Substituting that into S r, taking out common factor and denoting
it by Z we get

S r = Z
{
− Ã(W 2)+

+ p̂
[
(1− B(W 2))

1− B1

R1
− D(W 2)

D1

R1

]
+

+ p̂γ5
[
− D(W 2)

1− B1

R1
+ (1− B(W 2))

D1

R1

]}
=

= p̂ − Σr,

(30)

where renormalized components are given by

Ãr(W 2) = ZÃ(W 2),

B r(W 2) = 1− Z
[(
1− B(W 2)

)1− B1

R1
− D(W 2)

D1

R1

]
,

Dr(W 2) = Z
[
D(W 2)

1− B1

R1
−
(
1− B(W 2)

)D1

R1

]
.



To determine Z factor we consider renormalized eigenvalue λr
1(W ),

its derivative at W = W1 has to equal 1. It is easy to check that

R r(W 2) =
√

(1− B r(W 2))2 − (Dr(W 2))2 = ZR(W ),

and
λr

1(W ) = Zλ1(W ).

If to require (λr
1)′(W1) = 1 it gives

Z =
1

R(W 2
1 ) + 2W 2

1 R ′(W 2
1 )− 2W1A′(W 2

1 )
. (31)



In case of unstable fermions, the right hand side of (31) is,
generally speaking, complex. If we define

λr
1,2(W ) = |Z |λ1,2(W ), (32)

we have the renormalized propagator with λi (W ) satisfying the
Schwartz principle,

λr
i (W

∗) =
(
λr

i (W )
)∗
. (33)

So, λr
i has zeroes at complex conjugate points W1, W ∗

1 with unit
absolute value of residues.



Conclusions

We studied in detail the dressing of fermion propagator in the
case of the parity non-conservation. We found the
representation of propagator where the positive and negative
energy poles are separated from each other. The spectral
representation also allows to perform pole renormalization in a
simple and compact way.
In case of parity violation the resonance factor (20) differs
from Breit–Wigner-like formula. The reason is that in presence
of γ5 the Dyson summation of the self-energy insertions in a
propagator takes another form. But in case of SM vertex the
self-energy contains only the kinetic term and the obtained
resonance factor 1/λ1(W ) returns to the standard form for
small width Γ/m� 1.



Conclusions

The possibility to see a deviation is related with projectors
(12). One sees that Πk do not commutate with spin projectors
(1± γ5ŝ)/2 and this fact can lead to non-trivial spin
properties.
It is possible to generalize the spectral representation for
matrix case, when the coefficients in (6) are matrices, and to
use it for mixing problem with parity violation.



Multiplication properties of P basis

P1 P2 P3 P4

P1 P1 0 P3 0
P2 0 P2 0 P4
P3 0 P3 0 P1
P4 P4 0 P2 0

Table : Multiplication table for P-basis



Taking into account the expression for Z , we obtain following
formulae for renormalized components

Ar(W 2) = ZÃ(W 2) =

= Z
[
A(W 2)− A(W 2

1 ) + W1R(W 2
1 )
]
,

B r(W 2) = Z
{
− 2W1A′(W 2

1 ) + 2W 2
1 R ′(W 2

1 )+

+
(
B(W 2)− B(W 2

1 )
)1− B(W 2

1 )

R(W 2
1 )

+

+
(
D(W 2)− D(W 2

1 )
)D(W 2

1 )

R(W 2
1 )

}
,

Dr(W 2) = Z
{(

D(W 2)− D(W 2
1 )
)1− B(W 2

1 )

R(W 2
1 )

+

+
(
B(W 2)− B(W 2

1 )
)D(W 2

1 )

R(W 2
1 )

}
.


