CMS overview: Results of Searches for Higgs Boson and New Physics at LHC

Alexander Lanyov (JINR) on behalf of the CMS Collaboration

The XXI International Baldin Seminar on High Energy Physics Problems, JINR, Dubna

10-15 September 2012

CMS Public Physics Results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Outline:

- CMS Experiment
- Studies of Electroweak and QCD processes
- Results of searches for Higgs boson
- Searches for New Physics
- Heavy-ion physics
- Conclusions

CMS Detector

4

CMS Total Integrated Luminosity, p-p

• Excellent performance of LHC and CMS in 2011 and 2012

- $\int \mathcal{L} dt \approx 20 \, \text{fb}^{-1}$ in pp collisions collected at $\sqrt{s} = 7$ and 8 TeV
- Until the summer conferences 2012 analyzed \sim 10 $\rm fb^{-1}$
- Peak luminosity $7.6\times10^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$
- Data taking efficiency >90%
- Plans: to get $\sim 30 \text{ fb}^{-1}$ before end of 2012

^oeak Delivered Luminosity (Hz/nb)

CMS Peak Luminosity Per Day, 2012, p-p, $\sqrt{s} = 8 \text{ TeV}$

Performance plots (Tracker)

Track reconstruction efficiency for single muons as a function of pseudorapidity η

Performance plots (Muon system)

10.5 11 Dimuon mass [GeV]

1)

 3211 ± 65

R_{w(2S)}: 0.024 ± 0.008

 $\sigma = (29 \pm 1) \text{ MeV/c}^2$

data

3.6

₩ total fit --- background

3.8

CMS pp $\sqrt{s} = 7 \text{ TeV}$

 $L = 4.9 \text{ fb}^{-1}$

|y| < 0.6• 0.6 < |y| < 1.2

4.2

4

Dimuon mass distribution from several trigger paths

Published, submitted or in CWR

Standard Model (Electroweak & QCD)

Inclusive W and Z boson cross sections at $\sqrt{s} = 8$ TeV (SMP-12-011)

Measured Drell-Yan Cross Section EWK-11-007

Generally good agreement between data and theory (NNLO calculation with FEWZ) 2D differential distributions $d^2\sigma/dM dy$ also measured

C

200

Diboson Production (SMP-12-014)

CMS preliminary $L = 3.540 \text{ fb}^{-1}$

data-driven normalization

entries / 5 GeV ZZZZW+iets top 150 CMS Preliminary $\sqrt{s} = 8$ TeV, L = 5.26 fb⁻¹ CMS Preliminary $\sqrt{s} = 8$ TeV, L = 5.26 fb⁻ ∭ stat ⊕ syst ∑¹²⁰ 500 110 Events / 20 GeV 25 DATA WWDATA $pp \to ZZ \to IIII$ 100 eeee 77 20 μμμμ ີ ຊັ່¹⁰⁰ WZ/Z + jets **ee**uu 15 50 90 10 80 data / prediction 5 70 1.5 60 · 60

Measured cross sections:

400

600

 $\sigma(pp \to ZZ) = 8.4 \pm 1.0 (\text{stat.}) \pm 0.7 (\text{syst.}) \pm 0.4 (\text{lumi.}) \text{ pb} \text{ (for } m_Z \in [60, 120] \text{ GeV})$ $\sigma(pp \to WW) = 69.9 \pm 2.8 \text{ (stat.)} \pm 5.6 \text{ (syst.)} \pm 3.1 \text{ (lumi.) pb}$

90

100

110

m_{71→∥} [GeV]

12

80

70

Consistent with the standard model prediction.

80

m₄ [GeV]

0.5

0 0

50

100

150

200

m, [GeV]

Results are in good agreement with NLO pQCD until jet $p_T \sim 2$ TeV. Used in general fits of collider data by fastNLO Collaboration (ArXiv:1109.1310).

Results are in good agreement with NLO pQCD until invariant dijet mass 5 TeV. Quark compositeness: lower limit on the contact interaction scale: $\Lambda^+ = 5.6 \text{ TeV}, \Lambda^- = 6.7 \text{ TeV}$ at 95% confidence level.

Ratio of the 3-jet to 2-jet Cross Sections (QCD-10-012)

Results for ratio of the inclusive 3-jet to 2-jet cross sections are in good agreement with SM for all values H_T between from 0.5 to 2.5 TeV (extending to an H_T range that has not been explored before).

Event shapes provide information about the properties of hadronic final states

Pythia6 and Herwig++ predictions agree with the measurements in all three momentum bins, ALPGEN, MADGRAPH and Pythia8 curves have some deviations from the data.

These measurements provide input for improvement of currently available models of QCD multijet production.

"Ridge effect" observed for the first time in pp collisions. Particle correlations: wide $\Delta \eta$ region, narrow $\Delta \phi \approx 0$ region

(c) CMS N ≥ 110, p₁>0.1GeV/c

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

Pronounced structure at large $\Delta \eta$ around $\Delta \phi \approx 0$!

Experimental manifestation of the new coherent effects in proton-proton collisions

 \implies Flow of possible explanations using different mechanisms

FERMIONS

Second

Generation

First

Generation

10³

July 4 Fireworks: from CERN to Melbourne

Timeline for Higgs Searches at CERN & 2011+2012 Analyses by CMS

- LEP excluded $M_H < 114 \text{ GeV} (2003)$
- LHC exclusion, using 2011 data 127-600 GeV 3σ peak at ~ 125 GeV (CMS-PAS-HIG-12-008)
- Fit of precision electroweak measurements (March 2012)
- On July 4, 2012, CMS and ATLAS reported 5σ observation (each) of a new boson with mass about 125 GeV, consistent with the SM Higgs boson.
- Papers submitted to publication on July 31: Phys. Lett. B716 (2012) 1; 30.

SM Higgs: Cross sections & Branchings

Expected cross sections for SM Higgs boson

Η

 \bar{q}

CMS Overview

A. Lanyov

W, Z

· H

q

 \sim

5 main channels:

Summary	of the subchannels, or	categories, used	d in the analy	sis of each	n decay mo	ode.	
Decay	Production	No. of	m_H range	Int. Lum. (fb^{-1})		-	
mode	$\operatorname{tagging}$	subchannels	$({ m GeV})$	$7{ m TeV}$	$8{ m TeV}$		
$\gamma\gamma$	untagged	4	110 - 150	5.1	5.3	Excellent mass resolution	
	dijet (VBF)	1 or 2				1-2%	
ZZ	untagged	3	110 - 600	5.1	5.3	J 1 2/0	
WW	untagged	4	110-600	4.9	5.1		
	dijet (VBF)	1 or 2				Worst mass resolution	
au au	untagged	16	110-145	4.9	5.1	Largest cross section	
	dijet (VBF)	4					
bb	lepton, E_T^{miss} (VH)	10	110 - 135	5.0	5.1	J	

All 2012 analyses were the In order to avoid the possibility of an unintended bias, an over 2012 data were fixed before looking at the result in the signal region. Nost of analyses have been re-optimized compared to 2011. • All 2012 analyses were "blind": analyses were fixed before looking at the signal region. In order to avoid the possibility of an unintended bias, all selection criteria in the analyses of the 2011 and

• Most of analyses have been re-optimized compared to 2011.

- Significance: 4.1σ (expected 2.8σ)
- Excess at $\sim 125 \text{ GeV}$
- \bullet Very consistent between 2011 and 2012
- Resulting strength at 125.6 GeV: $\mu = \sigma / \sigma_{SM} = 1.6 \pm 0.4$
- $\gamma\gamma$ alone excludes almost full mass region
- Cross-checked with two alternative analyses (simple cuts and MVA) \Longrightarrow Compatible results

Event display for Higgs $\rightarrow \gamma \gamma$

- Clean channel:
 - 2 high-mass pairs of opposite-signisolated electrons or muonscoming from Primary vertex
- Narrow mass peak: Very good mass resolution 1–2%
- Background:
 - irreducible: ZZ
 - reducible: Z + jets, $Zb\bar{b}$, $t\bar{t}$, WZ
- Small Branching $\sim 10^{-3}$ at 125 GeV

A. Lanyov CMS Overview

Higgs $\rightarrow ZZ \rightarrow 4\ell$ (HIG-12-016)

Number of selected events and background (mass range 110-160 GeV)

Channel	4e	4μ	$2\mathrm{e}2\mu$	4ℓ
ZZ background	2.7 ± 0.3	5.7 ± 0.6	7.2 ± 0.8	15.6 ± 1.4
Z + X	$1.2^{+1.1}_{-0.8}$	$0.9\substack{+0.7 \\ -0.6}$	$2.3^{+1.8}_{-1.4}$	$4.4^{+2.2}_{-1.7}$
All backgrounds $(110 < m_{4\ell} < 160 \text{GeV})$	4.0 ± 1.0	6.6 ± 0.9	9.7 ± 1.8	20 ± 3
Observed $(110 < m_{4\ell} < 160 \mathrm{GeV})$	6	6	9	21
Signal $(m_H = 125 \mathrm{GeV})$	1.36 ± 0.22	2.74 ± 0.32	3.44 ± 0.44	7.54 ± 0.78
All backgrounds (signal region)	0.7 ± 0.2	1.3 ± 0.1	1.9 ± 0.3	3.8 ± 0.5
Observed (signal region)	1	3	5	9

- Significance: 3.1σ (expected 3.6σ)
- Excess at $\sim 125.6 \text{ GeV}$
- Resulting strength: $\mu = \sigma / \sigma_{SM} = 0.7^{+0.4}_{-0.3}$
- ZZ alone excludes almost full mass region

Event display for Higgs $\rightarrow ZZ \rightarrow 2\mu \, 2e$

Higgs $\rightarrow WW \rightarrow \ell \nu \ell \nu$ (HIG-12-017)

 \bullet Broad excess compatible with presence of $1\,\mathrm{x}\,\mathrm{SM}$ Higgs

• $\tau \tau$ — No significant excess wrt SM background Sensitivity close to $1 \times SM$ Higgs (improved by about 70% wrt 2011)

• bb — Two b-jets, large background is reduced by requiring an associated vector boson Analysis improvements wrt 2011 ~ 50% in sensitivity Results: broad excess compatible with presence of $1 \ge 50$ Higgs

Higgs — Combination of All Channels

Expected and observed local *p*-values for $m_H = 125.5 \text{ GeV}$ (expressed in corresponding number of standard deviations of the observed excess from the background-only hypothesis)

Decay mode/combination	Expected (σ)	Observed (σ)
$\gamma\gamma$	2.8	4.1
ZZ	3.6	3.1
au au + bb	2.4	0.4
$\gamma\gamma + ZZ$	4.7	5.0
$\gamma\gamma + ZZ + WW$	5.2	5.1
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	5.8	5.0

The fitted σ of the excess near 125 GeV is consistent with the SM scalar boson expectation: $\frac{\sigma}{\sigma_{SM}} = 0.87 \pm 0.23$

Signal strengths in 7 and 8 TeV data are consistent.

Higgs Couplings C_V vs C_F

Higgs — Mass of the observed new boson

- Not yet really sensitive with the analyzed dataset. No public results yet using the data
- Only known that the observation of $\gamma\gamma$ channel excludes the spin 1 hypothesis (Landau-Yang theorem) Ge
- Spin 2 and Parity could be probed using angular distributions
- $H \rightarrow ZZ \rightarrow 4\ell$ projections: using MELA Discriminator we can discriminate between scalar and pseudo-scalar at 3σ level with 30 fb⁻¹ at 8 TeV (assuming SM cross section)

• Other channels $(WW, \gamma\gamma)$ are being studied as well -20

Spin/Parity Measurements in WW and $\gamma\gamma$ Channels

Y. Gao, A. Gritsan, Z. Guo, et al., Phys.Rev. D81 (2010) 075022 — considered separation in ZZ channel S. Bolognesi, Y. Gao, A. Gritsan, et al., arXiv:1208.4018 — added WW and $\gamma\gamma$ channels (see also ICHEP'2012)

- CMS observed a new boson consistent with a SM-like Higgs boson, more prominently in $\gamma\gamma$ and $ZZ \rightarrow 4\ell$ channels
 - Used data corresponding to up to $5.1\,{\rm fb^{-1}}$ at 7 TeV and $5.3\,{\rm fb^{-1}}$ at 8 TeV.
 - 5 decay modes: $\gamma\gamma$, ZZ, W⁺W⁻, $\tau^+\tau^-$ and $b\overline{b}$.
 - Excess observed: local significance of 5.0σ (expected 5.8σ)
 - Fit gives $M = 125.3 \pm 0.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)} \text{ GeV.}$
 - Results are consistent (within uncertainties) with expectations for a SM Higgs boson.
 - A new era starts for the measurements of its properties, including also spin and parity determination.
- \bullet All the remaining mass range from 115 to 600 GeV is excluded at 99% CL.
- No evidence of BSM Higgs bosons and improved limits are obtained in different scenarios.
- CMS and LHC are on track to get a total of $\sim 30 \text{ fb}^{-1}$ by the end of 2012.

Search for Narrow Heavy Resonances in Dilepton Spectra (EXO-12-015)

CMS limits are more restrictive than those previously obtained with similar direct searches by the Tevatron experiments or indirect searches by LEP-II experiments.

A SSM W' with M < 2.85 TeV was excluded at 95% CL (with $3.5 \,\mathrm{fb^{-1}} \sqrt{s} = 8$ TeV data).

Combining 2011+2012 results does not improve further.

No excess over expectations from standard model processes is observed. Combining 7 + 8 TeV data and electron + muon channels, We exclude the region in the two-dimensional parameter (M_{W_R}, M_{N_ℓ}) space that extends beyond $M_{W_R} = 2.9$ TeV.

Search for Narrow Resonances using the Dijet Mass Spectrum (EXO-12-016)

different types of exotic resonances are set in the range 1–4.7 TeV. Many of them extend the previous exclusions from the dijet mass search.

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.0, 4.69]	[1.0,4.69]
Excited Quark (Q*)	qg	[1.0, 3.19]	[1.0,3.48]
E ₆ Diquark (D)	qq	[1.0, 4.28]	[1.0,4.18]
Axigluon (A) /Coloron (C)	qq	[1.0, 3.28]	[1.0,3.59]
s8 Resonance	gg	[1.0, 2.67]	[1.0,2.66]
W' Boson (W')	qq	[1.0, 1.74]	[1.0,1.97]
		[1.97, 2.12]	
Z' Boson (Z')	qq	[1.0, 1.60]	[1.0,1.58]
RS Graviton (RSG)	qā+gg	[1.0, 1.36]	[1.0,1.30]

CMS set limits on the minimum Black Hole mass of 4.1–6.1 TeV. The last analysis at $\sqrt{s} = 8$ TeV has a substantially increased sensitivity compared to previous searches.

Exotica 95% CL Limits

A. Lanyov CMS Overview

Supersymmetry 95% CL Limits

Many searches of Supersymmetry at CMS has been performed. Limits have been set.

A. Lanyov CMS Overview

Studies of Resonances in PbPb collisions

Observation of Jet Quenching in PbPb collisions

Large jet quenching has been observed by CMS and ATLAS

Phys. Rev. C84 (2011) 024906, "Observation and studies of jet quenching in PbPb collisions at $\sqrt{s_{NN}} = 2.76 \,\text{TeV}$ "

Central

- CMS detector performance is excellent, new results are produced at very high rate.
- Impressive agreement of the data with the Standard Model.
- ...even very impressive: A new boson is found around 125 GeV with 5.0σ , compatible with Higgs boson.
- Spin/parity determination of this boson is expected with 30 fb⁻¹.
- Many papers at CMS O(200), impossible to mention all analyses in a talk.
- Looking back: What were the projections at the start of the LHC run?
- What has Nature prepared for us?
- Stay tuned for next results

A. Lanyov CMS Overview

Thank you